

ESTUDIO DE CRECIDA MAXIMA PROBABLE PARA EL RIO LIMAY

ACTA COMPLEMENTARIA Nº 1

Al Convenio de Colaboración Técnica entre el

ORGANISMO REGULADOR DE SEGURIDAD DE PRESAS

y el

INSTITUTO NACIONAL DEL AGUA

Octubre de 2002

Equipo de Trabajo

INA-Centro Regional Andino

Ing. Jorge A. Maza (responsable) Inga. Patricia M. López Cdor. Luis A. Fornero Lic. Adrián Vargas Araníbar Ing. Miguel Manzanera Téc. Marta S. Núñez

Ing. Pedro Fernández (CONICET-asesor) Inga. Sara Rodríguez (contratada) Sr. Pablo Llorente (becario INA) Sr. Víctor Burgos (becario INA)

INA-Dirección de Servicios Hidrológicos

Ing. Rafael Seoane (co-responsable) Lic. Cristina Moyano Inga. Diana Chavasse

Lic. Irene Obertello (contratada)

INDICE

1. INTRODUCCIÓN	1
1.1. Marco de referencia para la realización del estudio	1
1.2 Objeto y alcance de los estudios realizados	2
1.3. Marco metodológico	3
2. RECOPILACIÓN Y REVISIÓN DE LA INFORMACIÓN	5
2.1. Información cartográfica	5
2.2. Información meteorológica	10
2.2.1. Información pluviométrica	10
2.2.2. Temperatura de rocío	11
2.2.3. Datos de temperaturas del aire y viento	14
2.2.4. Información sinóptica	15
2.3. Información hidrometeorológica	21
3. SELECCIÓN Y DETERMINACIÓN DE LA PMP	25
3.1. Definición de Precipitación Máxima Probable (PMP)	25
3.2. Metodología utilizada	25
3.3. Información utilizada	27
3.4. Análisis de las tormentas seleccionadas	28
3.5. Maximización por punto de rocio	36
3.6. Maximización de cada tormenta	30
4. ESTUDIOS HIDROLÓGICOS	50
4.1. Determinación de las condiciones antecedentes para la CMP	50
4.2. Implementación del modelo hidrológico	55
4.2.1. Simulación en las cuencas lacustres	55
4.2.1.1. Metodologia 4.2.1.2. Proceso de transformación precipitación caudal	55
4.2.1.3. Determinación de la componente de fusión nival	56
4.2.1.4. Estimación de parámetros para la simulación del proceso de transformación	50
precipitacion-caudal	59 59
4.2.1.6. Calibración y validación	60
4.2.1.7. Resultados y conclusiones	64
4.2.2. Implementación del modelo HEC-1	75
4.2.2.1. Características del modelo HEC-1	75 77
4.2.2.3. Calibración del modelo	80
4.2.2.4. Validación del modelo	85
4.2.2.5. Analisis de los resultados 4.2.2.6. Validación con el modelo IHMS	91
4.3. Selección de las condiciones generadoras de la CMP	95
4.3.1. Incidencia de la fusión nival	95
4.3.2. Análisis de separación entre pretormenta y PMP	97
4.3.3. Condiciones Generadoras de la CMP	98
4.4. Aplicación del modelo con las PMP	98
4.5. Comparación con estudio de HIDRONOR	110

5. TRANSITO DE LA CMP	113
5.1. Topología de la simulación	113
5.2. Características hidráulicas y normas de operación de los embalses	117
5.2.1. Embalse Alicurá	117
5.2.2. Embalse Piedra del Aguila	118
5.2.3. Embalse Ezequiel Ramos Mexía (Presa El Chocón)	123
5.3 Determinación de año húmedo y año normal	126
5.4 Simulación del tránsito de la CMP por el sistema de embalses: Alicurá, Piedra del Águila y El Chocón	126
5.4.1 Condiciones iniciales del tránsito de la CMP	126
5.4.2. Resultados del Tránsito de la CMP	127
6. REFERENCIAS BIBLIOGRAFICAS	133

- ANEXO I ANÁLISIS ESTADÍSTICO DE CAUDALES
- ANEXO II ESQUEMA METODOLÓGICO DEL U.S. F.E.R.C.
- ANEXO III BASE DE DATOS DE INFORMACIÓN HIDROMETEOROLÓGICA (en CD)
- ANEXO IV ARCHIVOS DE INPUT Y OUTPUT DEL MODELO HEC-1 (en CD)

DETERMINACION DE LA CMP PARA EL RIO LIMAY

1. INTRODUCCIÓN

1.1. Marco de referencia para la realización del estudio

Dentro de su programa de fiscalización de seguridad de presas, el ORSEP Comahue realiza auditorías técnicas periódicas a las obras concesionadas, a través de Consultores Independientes designados por el Organismo. Durante las mismas se revisan todos los aspectos relacionados con la seguridad de presas y particularmente la competencia de las obras de alivio con relación a los eventos hidrológicos extraordinarios.

Como resultado de las auditorías realizadas durante el año 1995 a las obras de Piedra del Aguila y Alicurá sobre el río Limay y al complejo Cerros Colorados sobre el río Neuquén, los consultores independientes recomendaron la revisión de los estudios hidrológicos relacionados con dichos emplazamientos.

En función de tal recomendación, y en virtud del artículo 14.6 de los Contratos de Concesión respectivos, el ORSEP Comahue decidió encarar la revisión de los estudios hidrológicos en la cuenca de los ríos Limay y Neuquén.

Por otro lado, dado el interés puesto de manifiesto por la Autoridad Interjurisdiccional de Cuencas de los ríos Limay, Neuquén y Negro (AIC) y considerando su competencia en las normas de manejo de agua, el Directorio del ORSEP Comahue acordó con dicha Autoridad que la misma lleve adelante la revisión de los estudios mencionados.

De este modo la AIC, encomendó a la firma *British Columbia Hydro International (BC Hydro),* la elaboración de un informe de evaluación de los estudios efectuados hasta la fecha, referentes a la determinación de las Crecidas Máximas Probables (CMP) en los distintos emplazamientos, construidos y proyectados, en las cuencas de los ríos Limay y Neuquén. Esta revisión tuvo por objeto determinar la necesidad de realizar una actualización de los estudios existentes. En particular, para el caso del río Neuquén, se previó la posibilidad de actualizar la CMP en Paso de los Indios, tarea que ya fue realizada por cuenta de la AIC.

A continuación se enumeran los estudios de CMP realizados con anterioridad en distintos sitios de la cuenca del río Limay:

- "Crecida Máxima Probable del Río Limay en Alicurá". Hidronor S.A., 1971.
- "Crecida Máxima Probable del Río Collón Cura en el Emplazamiento del Aprovechamiento Collón Cura - Aguas arriba del Río Caleufú". - Hidronor S.A., 1973.
- "Crecida de Proyecto para el Aprovechamiento Piedra del Águila". Hidronor S.A. Gerencia de Planeamiento. Devoto, Manzano, Obertello, Seoane. 1981.
- "Evaluation of the Probable Maximum Flood for Piedra del Águila Dam on Río Limay, Argentina". Linsley, 1981.
- "Verificación de la Crecida de Proyecto de Alicurá". Hidronor S.A. Gerencia de Planeamiento. Devoto, Manzano, Obertello, Seoane. 1981.

- "Aprovechamiento Piedra del Águila Hidrología y Meteorología". Hidronor S.A., Consultores Patagonia.
- "Alicurá Hydro Project Review of Probable Maximum Flood Studies made by Hidronor". HARZA, 1994.
- Report N° BCHIL.52 Review of PMP/PMF for the Limay River and Neuquén River Basins, Argentina. Elaborado por la British Columbia Hydro. Agosto de 1996.

1.2 Objeto y alcance de los estudios realizados

Los estudios tuvieron por objeto principal determinar la Crecida Máxima Probable (CMP) en los sitios correspondientes a los emplazamientos de Alicurá y Piedra del Aguila ubicados sobre la cuenca del río Limay.

Además de tomar como referencia los estudios específicos realizados con anterioridad - detallados en el punto anterior - para el desarrollo de los estudios se tuvieron en cuenta, previo a su análisis y evaluación - las recomendaciones del informe "*Report N*" *BCHIL.52* - *Review of PMP/PMF for the Limay River and Neuquén River Basins, Argentina. Agosto de 1996*" elaborado por la British Columbia Hydro.

Como complemento de los citados estudios de CMP, se realizaron análisis estadísticos de frecuencia, para determinar la recurrencia de los caudales medios diarios afluentes a los emplazamientos de Alicurá y Piedra del Aguila.

Los estudios desarrollados comprendieron el alcance que se describe a continuación:

a) Para la determinación de las CMP

Recopilación y revisión de información

Un completo relevamiento de la documentación existente sobre la base de la cual se elaboró un listado de la información necesaria para realizar los trabajos. Se procedió a la revisión de los datos hidrometeorológicos, validación de su calidad y actualización de los datos básicos de la cuenca.

Selección y Determinación de la Precipitación Máxima Probable (PMP) y de la Tormenta Máxima Probable (TMP)

La nueva PMP se obtuvo a partir de tormentas maximizadas propias de la cuenca. La distribución areal y temporal de la misma se basó en datos disponibles obtenidos de tormentas históricas.

Determinación de condiciones antecedentes para la CMP

Además de la PMP, para estimar la CMP fue necesario evaluar y determinar las condiciones antecedentes a la PMP. Esta tarea incluyó la evaluación de precipitaciones nivales, suelos, cobertura del suelo, niveles en los lagos y datos de tormentas históricas y de temperaturas. Las condiciones antecedentes se determinaron a partir de la revisión de datos históricos y de mecanismos causantes de grandes crecidas históricas.

Selección del modelo hidrológico a utilizar

Se utilizó un modelo determinístico de transformación lluvia - caudal calibrado que permitió considerar las particularidades de la cuenca, como ser el impacto de la elevación en las precipitaciones pluviales y fusión de nieve, particularmente importante en áreas de considerables gradientes de elevación.

Calibración del modelo hidrológico para eventos de grandes crecidas

El modelo hidrológico calibrado fue validado para comprobar que los eventos de crecidas importantes estaban modelados en forma apropiada.

Selección de condiciones generadoras de la CMP

Se realizó una selección de precipitaciones en la generación de la CMP para que fuera la más adecuada a los efectos de representar las condiciones mas críticas para el escurrimiento. La selección de esta variable utilizada en la generación de la CMP estuvo basada en estudios previos, análisis de mecanismos de crecidas históricas y en las normas de operación de los embalses.

Aplicación del modelo hidrológico

La CMP fue generada por la aplicación del modelo hidrológico de la cuenca calibrado para la combinación seleccionada de lluvia y fusión nival.

Tránsito de la CMP ingresante

El tránsito de la CMP comprobó la aptitud de las estructuras de derivación de los embalses y la máxima elevación de los mismos durante la crecida (incluyendo el embalse Ramos Mexía). El tránsito sobre los embalses se efectuó a través de rutinas que incluyeron las características de los mismos, niveles iniciales, leyes de descarga y normas de operación.

b) Para los análisis estadísticos de caudales

Recopilación y revisión de información

Para la gestión de la información necesaria se utilizó el mismo criterio indicado para la CMP. Asimismo se procedió a la revisión de las series de caudales y a la validación de su calidad, con el objeto de definir la longitud de las series a utilizar.

Análisis estadístico de caudales

Para determinar la recurrencia de caudales se evaluaron distintas funciones de distribución de valores extremos y se seleccionó aquella que proporcionó la información más confiable.

1.3. Marco metodológico

La metodología de los estudios aquí desarrollados están fundamentados en los lineamientos que al respecto describen la WMO en su "Manual for the estimation of probable maximum precipitation" y la U.S. Federal Energy Regulatory Commission (FERC) en su "Engineering Guidelines for the evaluation of Hydropower Projects".

Esta última publicación define a la CMP como "....la crecida que puede esperarse por las más importantes combinaciones de condiciones críticas meteorológicas e hidrológicas que son razonablemente posibles en la cuenca de drenaje bajo estudio". A su vez también menciona que una CMP se genera por la Precipitación Máxima Probable cuya definición se da en 3.1 en un todo de acuerdo a lo expresado por la WMO.

También FERC expresa que "...el desarrollo del hidrograma de la CMP involucra dos pasos los cuales son de naturaleza hidrológica e hidráulica respectivamente:

• Modelación del escurrimiento a través de la cuenca de drenaje para producir una CMP de entrada al embalse

 Tránsito de la CMP entrante a través del embalse y obras de descarga de la presa para obtener la CMP saliente y la máxima elevación del nivel de agua en el embalse

Por otra parte FERC también "...*propone el uso de la teoría del hidrograma unitario como el modelo preferido para desarrollar un hidrograma de CMP*", y recomienda la utilización del modelo HEC-1 del USCE debido a su amplio uso y a la experiencia adquirida con este programa.

A continuación en la Figura 1.3.1 se muestra un esquema metodológico que está en un todo de acuerdo con lo expresado y con el diagrama de flujo desarrollado por el FERC que se adjunta en el Anexo II.

Fig. 1.3.1. Esquema metodológico

2. RECOPILACIÓN Y REVISIÓN DE LA INFORMACIÓN

La recopilación de la información se llevó a cabo cubriendo los distintos aspectos metodológicos detallados en 1.2 y 1.3

2.1. Información cartográfica

Para conformar el mapa base se recopilaron mapas de:

Hidronor S.A. Departamento de Recursos Hídricos. Ríos Limay y Neuquén. Cuencas Pluvionivales en estudio. Escala 1:500.000. Marzo 1983.

AIC-Secretaría Operativa Red Hidrometeorológica. Escala 1:1.000.000. Octubre 1994.

Mapa base ejecutado por Beta Studio para el Modelo IHMS. Cartas I.G.M. Cartas viales del ACA.

Se editó la carta topográfica altimétrica confeccionada por el Beta Studio para la implementación del modelo IHMS en la cuenca del río Limay, conteniendo puntos de apoyo altimétrico, curvas de nivel, altura, planimetría de lagos y bordes de cuencas. Dicha edición consistió principalmente en la revisión y adecuación de la información de la carta. Así, se codificaron colores para rangos altimétricos y cauces, y se definieron aproximadamente 1030 polígonos, tanto en relación a las subcuencas como a los niveles de elevación.

Ubicación de estaciones hidrometeorológicas

Para situar las mismas se contó con una carta producida por la Secretaría Operativa de la Autoridad Interjurisdiccional de las Cuencas de los ríos Limay, Neuquén y Negro(AIC), consistente en un mapa general de las Provincias de Neuquén y Río Negro. En esta carta, por edición se ubicaron las estaciones y se incorporó a la carta general un pequeño sector faltante de resolución, correspondiente al sector Sur (cuencas 323 y 325).

Información gráfica

La información gráfica general que se extrajo de la carta principal fue la siguiente:

- Límites precisos de la cuenca principal y subcuencas.
- Clasificación de los cauces permanentes principales, secundarios y terciarios.
- Ubicación y elevación de los sitios de descarga de las subcuencas.
- Longitudes de los cauces principales en su recorrido mas largo.
- Superficies y ubicación de los centroides de las subcuencas.
- Superficies acumuladas de los polígonos, comprendidos entre curvas de nivel.

Las referencias cartográficas de la carta principal se expresaron en coordenadas Gauss Krugger, debiendo considerase que los errores de dispersión geométrica entre las dos cartas utilizadas, no fueron significativos a los fines del trabajo general, y ambas pudieron ajustarse adecuadamente.

Las determinaciones mencionadas permitieron confeccionar la Tabla 2.1.1 de parámetros morfométricos de las cuencas, el mapa de subcuencas (Figura 2.1.1) y la determinación de la altura media hipsométrica (Tabla 2.1.2, Figuras 2.1.2 y 2.1.3)

Figura 2.1.1. Mapa de subcuencas

Nombre de la Cuenca	Cuenca Nº	Area (km2)	Perímetro (km)	Long. Cauce Ppal. (km)	H máx. (m s.n.m.)	H mín. (m s.n.m.)	Delta H (m)	Pend. Cauce (m/m)	Observaciones
Aluminé	301	932.20							Cuenca lacustre
Alto Aluminé	302	408.72	127.385	43.37	1850	960	890	0.021	
Río Kilka	303	757.32	143.752	49.683	2200	940	1260	0.025	
Aluminé en Rahué	304	1428.20	228.588	92.803	1600	920	680	0.007	
Quillén	305	294.50							Cuenca lacustre
Quillén en Sta Rosa	306	402.15	133.703	50.912	1300	930	370	0.007	
Aluminé en Tal.	307	1273.15	182.115	68.497	1710	730	980	0.014	
Tromen	308	416.20							Cuenca lacustre
Río Malleo	309	487.14	120.635	49.905	960	720	240	0.005	
Catan Lil Superior	310	975.06	196.404	68.109	2030	890	1140	0.017	
Catan Lil Inferior	311	1341.84	188.648	60.242	890	715	175	0.003	
Río Huechahué	312	555.12	153.229	41.47	730	690	40	0.001	
Huechulafquen	313	1022.70							Cuenca lacustre
Lolog	314	467.00							Cuenca lacustre
Río Chimehuín	315	1168.62	212.224	76.025	1450	690	760	0.010	
Bajo Collon-Curá	316	1699.29	230.581	81.772	1850	595	1255	0.015	
Hermoso	317	262.60							Cuenca lacustre
Falkner	318	406.40							Cuenca lacustre
Caleufú en C. de P.	319	518.93	145.378	41.313	1670	960	710	0.017	
Caleufú en P.Cord.	320	1096.31	157.924	51.331	960	595	365	0.007	
Traful	321	918.20							
Traful en la Cantera	322	1364.78	245.192	77.365	1720	650	1070	0.014	
Nahuel Huapí	323	3908.80							Cuenca lacustre
Limay en Rincón del Creide	324	836.45	164.198	50.662	1420	725	695	0.014	
Pichileufú	325	2115.38	298.973	134.636	1720	705	1015	0.008	
Arroyo Comallo	326	5132.07		127.53	2086	640	1446	0.011	Emb. Piedra del Aguila
Arroyo Pilcaniyeu	327	353,13		39.86	1465	540	925	0.023	Emb. Piedra del Aguila
Arroyo Pilahue	328	585,.5		46.87	1465	510	955	0.020	Emb. Piedra del Aguila
Superf. Total		31128.21							

Tabla 2.1.1. Parámetros morfométricos de las cuencas

Figura 2.1.2 Modelo digital de elevaciones de la cuenca del río Limay

Intervalo de Cotas (m s.n.m.)	Cota Media (m s.n.m.)	Area (km²)	A acum (km²)								
700	700	0.00	25057.07								
700-950	825	2614.58	22442.49								
950-1200	1075	10126.26	12316.23								
1200-1450	1325	5930.27	6385.95								
1450-1700	1575	3961.02	2424.94								
1700-1950	1825	1815.36	609.57								
1950-2200	2075	515.32	94.25								
2200-2450	2325	79.08	15.18								
2450-2700	2575	10.76	4.41								
2700-2950	2825	2.46	1.95								
2950-3200	3075	1.58	0.37								
> 3200	3200	0.37	0.00								
ALTITUD	Area Total= 25057.07										

Tabla 2.1.2. Curva hipsométrica para cuenca total río Limay

Figura 2.1.3. Curva hipsométrica. Cuenca río Limay

2.2. Información meteorológica

En esta sección se presenta una síntesis de la información hidrometeorológica que fue recopilada para la determinación de la Precipitación Máxima Probable y para la calibración de los modelos hidrológicos necesarios para la estimación de la Crecida Máxima Probable.

La recopilación abarcó datos de las variables precipitación diaria, punto de rocío, temperatura del aire, temperaturas extremas, viento y situaciones sinópticas asociadas con las crecidas registradas en 1944, 1945, 1981, 1985, 1993 y 2001.

2.2.1. Información pluviométrica

Para las tormentas anteriores a 1980 se han analizado los datos oportunamente usados por la empresa Hidronor S.A. en el primer estudio para la determinación de la CMP para Piedra del Aguila. La información pluviométrica posterior a 1980 fue suministrada por la Autoridad Interjurisdiccional de las Cuencas de los ríos Limay, Neuquén y Negro (AIC). En la Figura 2.2.1.1 se presenta la cantidad de estaciones disponibles para el análisis de cada tormenta.

Figura 2.2.1.1. Evolución de cantidad de estaciones de precipitación

En la Tabla 2.2.1.1 se presenta, como ejemplo, la información pluviométrica, ya procesada y consistida, de las estaciones disponibles para el análisis de la tormenta de mayo de 1985, que como se concluye en 4.4.2 originó la CMP. La información correspondiente a las otras tormentas seleccionadas se incluye en el Anexo III.

Estación	LatS	Lon W	23	24	25	26	27
LStacion			mayo	mayo	mayo	mayo	mayo
Loncopué	38 03	70 38	2.0	18.0	17.0	15.0	9.5
Bajada del Agrio	38 22	70 02	1.5	2.0	2.0	6.0	2.0
Paso de los Indios	38 32	69 24	0.0	0.4	0.8	1.2	0.3
Las Lajas	38 32	70 23	12.0	14.0	10.0	15.0	7.0
Sda. Lago Aluminé	38 58	71 03	51.0	53.0	30.0	35.5	27.0
Aluminé	39 14	70 55	60.5	45.0	29.0	29.5	20.0
Espinazo del Zorro	39 18	70 46	57.0	41.0	25.0	20.0	14.0
Ea. Belisle	39 21	70 41	55.0	39.0	21.0	15.0	11.0
Ea. Campo Grande	39 30	70 38	53.0	39.0	15.0	11.0	8.0
Ea. La Verde	39 31	70 43	57.5	44.0	17.0	13.0	9.5
Ea. Huechahue	39 39	70 53	66.0	49.0	24.0	22.0	12.0
Ea. Mamuil Malal	39 39	71 17	89.0	61.0	39.0	56.0	26.6
Ea.Los Helechos	39 45	71 19	94.0	61.0	41.0	59.0	26.7
Lago Huechulafquen	39 45	71 22	98.0	63.0	42.0	62.0	27.5
Ea. Casa de Lata	39 48	71 10	87.0	55.0	37.0	51.0	19.5
Ea. La Aída	39 50	70 52	65.0	44.0	24.0	22.0	9.0
Ea. San Ignacio	39 53	70 51	64.0	40.0	23.0	20.5	8.0
Junín de los Andes	39 56	71 04	80.0	47.0	33.0	38.0	14.0
Ea. Chacayal	40 03	70 56	69.0	36.0	25.0	21.3	9.0
Ea. Collun Co	40 04	71 10	90.0	44.0	36.0	33.0	16.6
Ea. Cerro de los Pinos	40 06	71 11	91.0	44.0	36.0	31.5	17.0
Hua Hum	40 07	71 39	136.0	58.0	47.5	43.0	33.0
Sanicó	40 09	70 25	28.0	13.5	5.0	3.0	1.0
Ea.Quechuquina	40 09	71 35	133.0	57.0	47.0	40.5	31.0
Ea. Alicurá	40 25	70 44	42.5	17.5	13.0	10.5	7.0
Lago Espejo Chico	40 35	71 44	117.0	63.5	45.0	33.0	36.0
Cto. L. Espejo	40 39	71 45	114.0	66.0	45.0	34.0	37.0
Villa La Angostura	40 47	71 39	104.5	71.5	50.0	37.0	35.5
Comallo Abajo	40 59	70 15	12.0	2.0	0.0	3.0	7.0
Nahuel Huapi	41 03	71 09	66.0	49.0	33.0	27.0	22.0
Ea.San Ramón	41 04	71 00	56.5	37.0	24.0	21.0	17.5
Bahía Lopez	41 05	71 36	105.0	100.0	75.5	59.0	34.5
Pampa Linda	41 14	71 46	126.0	76.0	54.7	46.0	35.0
Lago Mascardi	41 21	71 29	99.0	56.0	37.0	34.0	27.0
Ea. Las Bayas	41 28	70 40	52.0	15.0	1.0	6.0	10.5

Tabla 2.2.1.1. Información pluviométrica (mm) procesada y consistida, mayo de 1985

2.2.2. Temperatura de rocío

Se contó con las series de máximos anuales de punto de rocío persistente 12 horas, de cada mes del cuatrimestre mayo-agosto, para el período 1940-1980 correspondientes a siete estaciones meteorológicas ubicadas en la región en estudio. Además, en el marco del convenio con el Organismo Regulador de Seguridad de Presas (ORSEP), el INA adquirió en el Servicio Meteorológico Nacional (SMN) los datos de punto de rocío del período 1980-1999 proveniente de tres estaciones meteorológicas. Estos datos, según la estación de

observación y el año, tienen frecuencia horaria, tri-horaria o cada doce horas. En la Tabla 2.2.2.1 se presenta un resumen de la información disponible, que se incluye en el Anexo III.

Estación Meteorológica	Período	Latitud Sur	Longitud Oeste	
Piedra del Aguila	1954-76	40° 05'	70° 03'	
Las Lajas	1940-72	38° 32'	70° 23'	
Cutral Có	1940-70	38° 57'	69° 13'	
El Bolsón	1942-80	41º 56'	71º 33'	
El Doison	2001	41 30	71 55	
Bariloche Aero	1940-80	11º 00 '	71º 10'	
Danioche Aero	1981-2001	41 05	11 10	
Neuguén Aero	1981-98	81-98		
Neuquell Aero	2001	56 57	08 08	
Maguinahaa	1940-80	A 19 15'	699 44'	
Maquinchao	2001	41 15	08° 44	
Cipollotti	1940-80	290 57'	679 50'	
Cipolietti	1981-97	36 57	67° 59'	

Tabla 2.2.2.1. Información de puntos de rocío procesados y ubicación de estaciones*

*Fuente:	Las coordenadas de las estaciones provienen de la Estadística Meteorológica 1971-8	0
	y de la Estadística Climatológica 1961-70 del SMN	

Un análisis realizado muestra que las observaciones de Cipolletti, tienen meses faltantes (12%) en el período 1981-97; además se observó la ausencia de algunos datos horarios (9%) y la interrupción del registro en 1997. Por este motivo el SMN agregó la estación Neuquén Aero. Las series originales de punto de rocío, adquiridas al SMN se encuentran en el Anexo III.

Se ha procesado la información histórica de punto de rocío, calculando los puntos de rocío máximos persistentes en doce horas durante los meses de mayo, junio, julio y agosto de cada año (obtenidos como el valor máximo igualado o sobrepasado en todas las observaciones durante 12 horas). En la Tabla 2.2.2.2 se presentan los valores correspondientes a la estación Bariloche por ser la única con registro extenso en la cuenca. Los valores resultantes para cada mes y año para cada una de las demás estaciones se incluyen en el Anexo III

Año	Мауо	Junio	Julio	Agosto	Año	Мауо	Junio	Julio	Agosto
1940	7.5	7.4	6.8	3.9	1970	5.5	5.7	4.7	4.7
1941	3.6	2.6	3.3	4.7	1971	6.7	0.8	7.4	5.7
1942	6.8	6.1	2.9	2.3	1972	9.2	7.8	3.7	5.3
1943	7.8	4.2	3.9	2.0	1973	9.1	9.1	4.2	4.2
1944	4.3	6.1	4.7	2.6	1974	8.5	2.0	3.4	7.0
1945	8.0	9.0	2.4	1.8	1975	11.6	5.7	5.6	4.8
1946	6.4	3.4	2.9	3.0	1976	8.5	5.9	5.8	2.7
1947	9.0	5.2	1.5	2.9	1977	8.9	8.2	4.8	5.1
1948	7.7	5.6	3.2	3.3	1978	9.7	5.1	s/d	3.9
1949	4.7	6.1	2.9	-0.1	1979	9.9	7.3	4.8	7.9
1950	6.4	3.0	3.2	4.0	1980	8.1	4.7	4.4	5.3
1951	11.0	6.0	5.0	7.0	1981	7.3	5.8	5.1	5.1
1952	7.0	3.0	6.0	4.0	1982	10.1	5.8	4.9	6.3
1953	10.0	5.0	4.0	4.0	1983	5.5	2.2	3.1	3.8
1954	5.0	4.0	4.0	4.0	1984	3.4	2.3	2.2	2.4
1955	7.0	4.8	5.0	1.1	1985	6.3	7.9	5.0	5.6
1956	s/d	s/d	s/d	s/d	1986	5.6	4.3	6.1	4.5
1957	2.0	5.0	7.0	3.0	1987	4.8	9.6	4.5	4.0
1958	6.0	4.0	6.0	4.0	1988	8.6	4.7	1.9	4.2
1959	9.0	5.0	6.0	4.0	1989	4.7	6.7	3.6	5.1
1960	7.0	6.0	4.0	3.0	1990	5.3	5.8	4.5	6.0
1961	7.4	6.8	3.6	4.9	1991	6.4	4.2	4.3	2.4
1962	8.0	6.3	7.0	7.9	1992	5.1	4.0	1.4	3.8
1963	8.4	8.3	4.9	3.3	1993	s/d	5.0	5.6	4.3
1964	6.0	4.0	2.6	6.5	1994	9.3	7.2	6.1	2.9
1965	8.0	9.6	5.7	5.3	1995	9.4	6.8	3.6	2.8
1966	9.8	7.1	5.6	2.6	1996	8.6	4.5	7.1	5.7
1967	6.4	3.3	4.5	2.1	1997	6.8	6.0	8.6	7.2
1968	7.9	8.4	5.7	5.6	1998	7.4	4.1	2.2	4.0
1969	8.3	6.5	5.5	2.3	1999	5.0	5.0	3.9	5.4

Tabla 2.2.2.2. Temperatura de rocío persistente 12 horas máxima mensual en Bariloche

Además para cada período con tormentas durante los episodios lluviosos 1944, 1945, 1981, 1985, 1993 y 2001 se buscaron los valores representativos de punto de rocío persistentes durante 12 horas en las estaciones meteorológicas disponibles.

Las series de Chile suministradas por ORSEP corresponden a las estaciones Central Abanico, Polcura en Balseadero, Pangue, Troyo, Huilo-Huilo y Desagüe Lago Chapo. Los archivos incluyen los datos horarios de variables meteorológicas como temperatura, humedad relativa, tensión de vapor, tensión de saturación, temperatura de rocío y temperatura de rocío persistente correspondientes a las estaciones y períodos indicados en la Tabla 2.2.2.3.

Estación	Período	Latitud Sur	Longitud Oeste
Central Abanico	1977-98	37° 21'	71° 30'
Polcura en Balseadero	1961-98	37° 19'	71° 32'
Pangue	1972-94	37° 63'	71° 37'
Troyo	1971-97	38° 14'	71° 18'
Huilo-Huilo	1968-92	39° 49'	72° 01'
Desagüe Lago Chapo	1964-98	41° 26'	72° 35'

Tabla 2.2.2.3. Estaciones de Chile con parámetros meteorológicos horarios

La información de estas estaciones ha sido muy útil para el análisis de las tormentas ocurridas en 1981, 1985 y 1993. Los valores de temperatura, humedad y precipitación se han consultado especialmente para el análisis del origen de la tormenta de mayo de 1985 que fue la que dio origen a la CMP (4.4.2).

2.2.3. Datos de temperaturas del aire y viento

La aplicación del modelo de precipitación-fusión nival-caudal requiere información de distintas variables. Así se recopilaron los datos diarios referidos a temperaturas máxima, media y mínima, los cuales fueron suministrados por ORSEP como se puede ver en la Tabla 2.2.3.1. Durante las tormentas de abril y mayo de 1981 también se contó con valores diarios de presión y viento en la estación Bariloche Aero.

Estación	Año(s) observaciones	Variables	Frecuencia datos	Meses
	1981	Tx y Tmin y gráficos que incluyen PP	diaria	abril, mayo y junio
Villa La Angostura	1985	PP, Tx y Tmin	diaria	abril, mayo y junio
	1993	PP, Tx y Tmin y estado del tiempo	diaria	abril, mayo y junio
	1981	PP, Tx y Tmin, presión, viento (dd/ff)	diaria	abril y mayo
Bariloche		Tx y Tmin	diaria	todo el año
Aero	1985	Tx y Tmin	diaria	todo el año
	1993	Tx y Tmin	diaria	enero a agosto
Casa de Lata	1993	Tx y Tmin y estado del tiempo	diaria	abril y mayo
	1981/82	Tm, Tx, Tmin y estadísticos	diaria	abril a marzo
	1985/86	Tm, Tx, Tmin y estadísticos	diaria	abril a marzo
Collun-Co	1993/94	Tm, Tx, Tmin y estadísticos	diaria	abril a marzo
	1942/43/44/45 y 1949	Gráficos con Tm, Tx y valor medio Tmin. Precipitación, días con heladas y lluvia	mensual	enero a diciembre

Tabla 2.2.3.1. Resumen de la información de temperatura, presión y viento

Ref:

Tm: temperatura media diaria

Tx: temperatura máxima diaria Tmin: temperatura mínima diaria

PP: precipitación;

dd / ff : dirección e intensidad del viento

2.2.4. Información sinóptica

La AIC suministró las cartas sinópticas de superficie y altura en 500 hPa con las condiciones antes y durante la tormenta de junio de 1993. Se han obtenido del SMN las cartas sinópticas de superficie correspondientes a las tormentas restantes y se han almacenado los mapas con los días de mayor precipitación en cada tormenta. Para la tormenta de 1985, que dio origen a la CMP (4.4.2), se escanearon las cartas sinópticas de todos los días considerados para la maximización. Las cartas permiten identificar el origen de las tormentas y efectuar el seguimiento de los sistemas que dieron lugar a valores elevados de humedad y precipitación. En la Tabla 2.2.4.1 se presenta un inventario de las cartas recopiladas y procesadas. En las Figuras 2.2.4.1 a 2.2.4.4 se encuentran los mapas sinópticos de superficie para observar la evolución de la tormenta de 1985 (en el Anexo III se encuentran los correspondientes a los otros eventos estudiados).

Tormenta	Тіро Мара						Мар	a día					
26.20	Р	26	27	28	29	30							
junio	ME				29	30							
1344	SS	26	27	28	29	30							
	Р	10	11	12	13								
10-13 julio 1944	ME			12	13								
	SS	10	11	12	13								
27-30	Р	26	27	28	29	30							
mayo	ME				29	30							
1945	SS	26	27	28	29	30							
0.14	Р	9	10	11	12	13	14						
junio	ME		10		12								
1945	SS	9	10	11	12	13	14						
21-23	Р	18	19	20	21	22	23						
mayo	ME			20	21								
1901	SS	18	19	20	21								
23-27	Р	20	21	22	23	24	25	26	27	28	29	30	31
mayo	ME			22	23	24	25	26	27	28	29	30	31
1905	SS	20	21	22	23	24	25	26	27	28	29	30	31
23-28	Р	17 - 19	20	21	22	23	24	25	26	27	28	29	30
junio 1993	ME							25	26				
1000	SS	17 - 19	20		22	23	24	25	26				
24.28	Р	20	21	22	23	24	25	26	27	28	29	30	31
mayo	ME					24	25						
2001	SS	20	21	22	23	24	25	26	27	28	29	30	31
	Р	1 - 2	3	4	5	6	7	8	9	10	11	12	13-15
3-8 junio	ME			4	5								
2001	SS	1 - 2	3	4	5	6	7	8	9	10			

Tabla 2.2.4.1. Cartas sinópticas de superficie a las 9:00 horas

Ref:

Fechas en gris, días con tormentas considerados. En negrita, la carta no estaba disponible. ME: mapas escaneados

SS: resumen de la situación sinóptica

P : disponibilidad de mapas en papel

Fuente de los mapas: Servicio Meteorológico Nacional

Servicio Meteorológico Nacional

Servicio Meteorológico Nacional

Figura 2.2.4.2. Mapa sinóptico de superficie. 09:00 horas del 25 de mayo de 1985

Servicio Meteorológico Nacional

Servicio Meteorológico Nacional

Figura 2.2.4.4. Mapa sinóptico de superficie. 09:00 horas del 27 de mayo de 1985

2.3. Información hidrometeorológica

Para realizar la calibración del modelo HEC-1 se utilizó la información correspondiente a las estaciones hidrometeorológicas de la AIC (Tabla 2.3.1)

ID	S	ESTACION	Lat. S	Long. W	Coord Gauss	enadas Kruger
				Ŭ	X	Y
02000.10	Q	Nahuel Huapí	41º 3'	71º 8'	5455463.76	1574263.633
02000.64	Q	Rincón del Creide	40° 47'	71° 5'	5486885.36	1578802.967
02200.02	Q	Salmonicultura	40° 40'	71º 14'	5499977.50	1564843.943
02200.03	Q	La Cantera	40° 43'	71° 6'	5494318.15	1576064.432
02220.01	Q	Puente Río Minero	40° 41'	71º 17'	, -	, -
02300.06	Q	La Bomba (Corralito)	40° 44'	70° 41'	5492001,75	1612660,789
02300.07	Q	Corralito	40° 44'	70° 41'	5492001,75	1612660,789
04000.07	Q	Collón Curá(desemboc.)				
04100.03	Q	Puesto Córdoba	40° 30'	71º 10'	5515358,33	1569686,817
04110.01	Q	Salida Lago Meliquina	40° 23'	71º 16'	5528368,12	1563675,655
04130.01	Q	Río Hermoso	40° 20'	71º 20'		
04160.04	Q	Puesto López	40° 29'	71º 16'	5520348,25	1563607.569
06000.03	Q	Salida Lago Aluminé	38° 57'	71° 3'	5688583,28	1582353,772
06000.05	Q	Puesto Chacayal	40° 1'	70° 49'	5571778,44	1600101,805
06000.07	Q	Rahué	39° 22'	70° 56'	5644062,45	1591945,594
06000.15	Q	La Media Luna	39° 31'	70° 57'	5625585,80	1589337,983
06000.18	Q	San Ignacio	39° 50'	70° 51'	5590309,33	1598442,472
06000.21	Q	San Ceferino	39° 9'	70° 56'		
06000.25	Q	Ex Balsa Pulmari	39° 4'	70° 58'	5677386,21	1590894,734
06000.26	Q	Talhelum	39° 47'	70° 50'		
06000.27	Q	Ea.Huechahue	39° 57'	70° 48'		
06100.06	Q	Ea.Mamuil Malal	39° 39'	71º 16'	5611028,80	1564371,525
06100.09	Q	Malleo Abajo				
06200.03	Q	Ea.Santa Rosa	39° 22'	70° 57'	5644090,35	1589551,125
06200.04	Q	Ea.La Ofelia	39° 22'	71º 11'	5644273,93	1571832,175
06250.01	Q	Desemboc. A.Malalco	39° 22'	71º 12'	5644299,90	1568958,850
06300.03	Q	Pto. Casa de Piedra	39° 13'	70° 57'	5658893,63	1589721,091
06300.04	Q	Pehuén Curá	39° 13'	71° 9'	5659063,66	1573407,896
06400.02	Q	Salida Lago Ñorquinco	39° 8'	71º 13'	5670205,06	1569187,636
06400.03	Q	Desemboc. Río Pulmari	39° 6'	71° 0'		
06500.04	Q	Río Kilka (calc.sin aforo)				
06810.02	Q	Ea.La Nevada	38° 54'	71° 4'	5695999,34	1580984,685
06900.06	Q	Puesto Coifín	39° 52'	70° 48'	5586551,89	1602673,020
06900.08	Q	Las Coloradas	39° 33'	70° 35'	5623307,20	1620841,197
07000.03	Q	Ea.Casa de Lata	39° 49'	71º 10'	5592469,26	1570400,579
07000.09	Q	Puesto Confluencia	40° 4'	70° 50'	5566232,70	1599554,663
07300.02	Q	Salida Lago Lolog	40° 3'	71° 5'	5566467,52	1579643,385
08813.01	Q	Río Espejo Chico	40° 35'	71° 44'	5507624,64	1523987,804
02000.10	Ρ	Nahuel Huapí	41° 3'	71° 8'	5455463,76	1574263,633
02000.64	Р	Rincón del Creide	40° 47'	71° 5'	5486885.36	1578802.965

Tabla 2.3.1. Estaciones hidrometeorológicas en la cuenca del río Limay

ID	S	ESTACION	Lat. S	Long. W	Coordenadas	
U					Gauss	Kruger
			400,401	740 4 41	X	Y
02200.02	Р	Salmonicultura	40° 40'	/1° 14 [°]	5499977,50	1564843,943
02200.03	Р - Р	La Cantera	40° 43′	/1º 6'	5494318,15	1576064,432
02210.02	Р		40° 46'	/1º 11 [′]	5486970,37	1570359,698
02240.01	Р	Villa Tratul	40° 49′	/1º 23'	5500077,27	1552157,000
02300.04	Р	Ea.San Pedro	40° 53′	70° 34'	5473359,45	1620807,987
04100.03	Р	Puesto Córdoba	40° 30'	71° 10'	5515358,33	1569686,817
04150.01	Р	Hostería Lago Hermoso	40° 23'	71° 28'	5528501,64	1545280,365
04175.02	Р	Ea.Tres Lagos	40° 29'	71° 23'	5520435,78	1552299,480
04190.01	Р	Lago Villarino	40° 26'	71° 33'	5520066,02	1539607,267
04210.01	Р	Ea. Aquino	40° 12'	71º 3'	5548562,74	1580874,410
04300.01	Р	Ea.Alicurá	40° 25'	70° 44'	5525379,66	1608921,261
06000.03	Р	Salida Lago Aluminé	38° 57'	71º 3'	5688583,28	1582353,772
06000.05	Р	Puesto Chacayal	40º 1'	70° 49'	5571778,44	1600101,805
06000.07	Р	Rahué	39° 22'	70° 56'	5644062.45	1591945,594
06000.11	Р	Ea. la Aída	39° 50'	70° 52'	5590309,33	1598442.472
06000.15	Р	La Media Luna	39° 31'	70° 57'	5625585,80	1589337,983
06000.16	Р	Aluminé (Pueblo)	39° 14'	70° 55'	5656980,94	1594976,463
06000.23	Р	Ea. Los Ranchos	39° 39'	70° 57'	5610781,78	1589166,922
06030.01	Р	Ea. Huechahue	39° 39'	70° 53'	5610701,64	1595842,673
06030.02	Р	Ea Sihuen	40° 3'	70° 56'	5566339,73	1591021,226
06040.01	Р	Abra Ancha	39° 17'	70° 58'	5651480,97	1590594,866
06100.01	Р	Ea. Lolen	39° 47'	71° 2'	5597881,74	1584256,499
06100.06	Р	Ea. Mamuil Malal	39°39′	71º16′		
06120.01	Р	Ea. Palihue	39° 51'	71° 3'	5590510,33	1581321,727
06200.04	Ρ	Ea. La Ofelia	39° 22'	71º 11'	5644273,93	1571832,175
06210.07	Р	Añihueraqui	39°25′	71°25′		
06300.04	Р	Pehuen Curá	39° 13'	71° 9'	5659063,66	1573407,896
06300.06	Р	Laguna Choroi	39° 13'	71° 3'	5658977,88	1582044,271
06310.01	Ρ	Lago Rucachoroi	39° 14'	71º 10'	5657235,42	1570992,118
06400.01	Р	Ea. Pulmarí	39° 5'	71° 0'	5672500,76	1586512,033
06410.01	Р	Lago Ñorquinco	39° 9'	71º 15'	5666541,30	1564832,781
06500.03	Р	Paraje Kilka	38° 56'	70° 50'	5690215,47	1601160,395
06800.04	Р	Batea Mahuida abajo				
06820.04	Р	Hostería Moquehue	38° 56'	71° 30'	5690735,80	1544799,074
06820.07	Р	La Angostura	38° 52'	71º 14'	5697984,28	1566538,468
06900.02	Р	Ea.Campo Grande	39° 30'	70° 38'	5625804,17	1618968,510
06900.03	Р	Ea.Catan Lil	39° 44'	70° 36'	5602936,01	1621475,440
06910.01	Р	Ea.Los Remolinos	39° 45'	70° 42'	5599386,44	1611417,558
06930.01	Р	Ea.Belisle	39° 21'	70° 41'	5643757,15	1614932,733
06940.02	Р	Espinazo del Zorro	39° 16'	70° 35'	5651681,48	1621283,153
07000.03	Р	Ea.Casa de Lata	39° 49'	71º 10'	5592469,26	1770400,579
07000.04	Р	Ea.Cerro de los Pinos	40° 6'	71º 11'	5561000,28	1571058,065
07000.08	Р	Junín de los Andes	<u>39° 57' 71° 4' 5577571,25 1</u>		1579759,661	
07100.01	Р	Ea.Collun Co	40° 4'	71º 10'	5566561,00	1570161,909
07200.01	Р	Ea.Los Helechos	39° 45'	71º 19'	5599960,41	1559993,396
07210.07	Р	Cerro Anteao	39°45′	71°37′		
07310.01	Р	Boca Lago Lolog	40° 4'	71º 19'	5566650,15	1559732,337
07310.02	Р	Puerto Arturo	40° 1'	71º 22'	5572234,31	1555506,217
08000.11	Р	Ea.Las Estacas	40° 49'	71º 33'	5481647,19	1539371.742

Tabla 2.3.1.(cont.) Estaciones hidrometeorológicas en la cuenca del río Limay

ID	ID S ESTA		Lat. S	Long. W	Coordenadas Gauss Kruger	
				•	Х	Ϋ́Υ
08000.22	Р	Villa La Angostura	40° 47'	71° 39'	5487245,55	1529550,945
08100.01	Р	Ea.El Cóndor 41º 11'		71° 5'	5442463,22	1578328,503
08100.03	Р	Aeropuerto Bariloche	41º 9'	71º 10'	5444408,24	1569021,071
08310.02	Р	Villa Arelauguen	41° 10'	71º 24'	5442716,00	1549421,377
08700.03	Р	Puesto El Rincón	40° 43'	71° 48'	5494688,50	1516903,107
08811.01	Р	Lago Espejo Chico	40° 36'	71° 43'	5507624,64	1523987,804
08812.02	Р	Campam Lago Espejo	40° 39'	71º 45'	5500230,07	1521144,677
10000.03	Р	Ea.Quechuquina(Lacar)	Ea.Quechuguina(Lacar) 40° 9' 71° 35' 555		5555702,43	1534556,105
10000.11	Р	AUSMA UNC	AUSMA UNC 40° 10' 71° 21' 555373		5553734,94	1554424,506
11000.03	Р	lotel Tronador 41º 16' 71º 39' 5		5433569,28	1529335,792	
15110.01	Р	Ea.Las Bayas	Ea.Las Bayas 41° 28' 70° 40'		5408706,87	1611386,550
02000.10	Т	Nahuel Huapí	Nahuel Huapí 41° 3' 71° 8'		5455463,76	1574263,633
02000.64	Т	Rincón del Creide	40° 47'	71° 5'	5486885,36	1578802,967
02200.02	Т	Salmonicultura	40° 40'	71º 14'	5499977,50	1564843,943
02210.02	Т	Cuyin Manzano 40°		71º 11'	5486970,37	1570359,698
04100.03	Т	Puesto Córdoba	40° 30'	71º 10'	5515358,33	1569686,817
04150.01	Т	Hostería Lago Hermoso	40° 23'	71º 28'	5528501,64	1545280,362
04300.01	Т	Ea. Alicurá 40° 25'		70° 44'	5525379,66	1608921,261
06000.03	Т	Salida Lago Aluminé	38° 57'	71º 3'	5688583,28	1582353,772
06000.05	Т	Puesto Chacayal	40° 1'	70° 49'	5577778,44	1600101,805
06000.07	Т	Rahué	39° 22'	70° 56'	5644062,45	1591945,594
06000.16	Т	Aluminé (Pueblo)	39° 14'	70° 55'	5656980,94	1594976,463
06030.01	Т	Ea. Huechahue	39° 39'	70° 53'	5610701,64	1595842,674
06200.04	Т	Ea.La Ofelia	La Ofelia 39° 22' 71° 11' 5644		5644273,93	1571832,175
06820.04	Т	Hostería Moquehue	38° 56'	38° 56' 71° 30' 5690735,8		1544799,074
06820.07	Т	La Angostura	38° 52'	38° 52' 71° 14' 5697984		1566538,468
06900.02	Т	Ea.Campo Grande	39° 30'	39° 30' 70° 38' 562580		1618968,510
06900.08	Т	Las Coloradas	39° 33'	39° 33' 70° 35' 5623		1620841,197
06910.01	Т	Ea.Los Remolinos	39° 45' 70° 42'		5599386,44	1611417,558
07000.03	Т	Ea.Casa de Lata	39° 49'	71° 10'	5592469,26	1570400,579
07000.04	Т	Ea.Cerro de los Pinos	40° 6'	71º 11'	5561000,28	1571058,065
07000.08	Т	Junín de los Andes	39° 57'	71° 4'	5577571,25	1579759,661
07100.01	Т	Ea.Collún Co	40° 4'	71° 10'	5566561,00	1570161,909
07300.03	Т	Aeropuerto Chapelco	40° 5'	71º 7'	5561585,37	1574380,200
08000.22	Т	Villa La Angostura	40° 47'	71° 39'	5487245,55	1529550,945
08100.01	Т	Ea.El Cóndor	41° 11'	71° 5'	5442463,22	1578328,503
08700.03	Т	Puesto El Rincón	40° 43'	71° 48'	5494688,5	1516903,107
10000.03	Т	Ea.Quechuquina	40° 9' 71° 35' 5555702,43 15345		1534556,105	
10000.11	Т	AUSMA UNC	40° 10'	71º 21'	5553734,94	1554424,506
11000.03	Т	Hotel Tronador	41º 16'	71° 39'	5433569,28	1529335,792
15110.01	Т	Ea. Las Bayas	41° 28'	70° 40'	5408706,87	1611386,550

Tabla 2.3.1.(cont.) Estaciones hidrometeorológicas en la cuenca del río Limay

Q = Caudal P = Precipitación T = Temperatura

Información utilizada para el análisis de campos de nieve

A los efectos de estimar el área cubierta de nieve que se podría dar en los meses de ocurrencia de las precipitaciones pluviales se utilizaron las imágenes NOAA provistas por la AIC, de las siguientes fechas:

- 26 de junio '95
- 18 de agosto '95
- 22 de junio '96
- 27 de agosto '96
- 4 de mayo '97.

3. SELECCIÓN Y DETERMINACIÓN DE LA PMP

3.1. Definición de Precipitación Máxima Probable (PMP)

La precipitación asociada con los límites superiores es conocida actualmente como precipitación máxima probable (PMP) y se define como la mayor cantidad de precipitación meteorológicamente posible, correspondiente a una determinada duración, sobre un área de tormenta dada, en una ubicación geográfica particular y en determinada época del año, sin tener en cuenta las tendencias climáticas de largo plazo.

El uso de la meteorología para estimar valores de precipitación con la finalidad de diseño hidrológico comenzó a partir de la década del "30, cuando se utilizó por primera vez el concepto de un límite superior de la precipitación y se lo llamó precipitación máxima posible (MPP). Este término se utilizó en la mayoría de las publicaciones anteriores a 1950 referidas a la determinación de precipitaciones extremas. La principal razón para el cambio de nombre fue que la MPP implicaba la idea de un límite físico superior de la precipitación. Se prefiere el concepto de PMP debido a la incertidumbre inherente a cualquier estimación de la precipitación máxima.

Los valores de PMP estimados bajo estas condiciones deberían actualizarse a medida que se avanza en el conocimiento de los procesos atmosféricos y se incorpora nueva información.

3.2. Metodología utilizada

La metodología utilizada se puede resumir en los siguientes pasos:

- Selección de tormentas a maximizar, aplicando criterios hidrológicos.
- Análisis de las tormentas seleccionadas.
- Trazado preliminar de los campos de precipitación en escala diaria para los eventos seleccionados. Se efectúa con el propósito de detectar singularidades que podrían estar asociadas a la presencia de datos erróneos. Se aplica la técnica de análisis espacial objetivo.
- Corrección de los datos supuestamente erróneos. Los datos considerados erróneos son reemplazados por valores interpolados en el campo analizado.
- Trazado de los campos definitivos de precipitación diaria para cada evento. Se analizan nuevamente, incluyendo los datos corregidos.
- Selección de los episodios significativos de precipitación dentro del intervalo de cada crecida.
- Trazado de los campos de precipitación acumulada para los episodios seleccionados en el punto anterior.

En la Figura 3.2.1 se presenta un esquema del proceso de análisis.

Figura 3.2.1. Esquema del proceso de análisis de los campos de precipitación

- Maximización por punto de rocío. Se utiliza la información de las estaciones meteorológicas disponibles.
- Determinación del máximo punto de rocío en superficie persistente 12 horas, correspondiente a cada estación para cada tormenta.
- Reducción al nivel de 1000 hPa de los valores determinados en el punto anterior.
- Estimación del valor medio areal del máximo punto de rocío en superficie persistente 12 horas (reducido a 1000 hPa) para cada tormenta.
- Determinación del máximo punto de rocío en superficie persistente 12 horas de la serie histórica de cada estación, para cada mes del cuatrimestre mayoagosto. Como las series son de longitudes diferentes, se utiliza el criterio recomendado por la Organización Meteorológica Mundial (OMM), consistente en realizar un análisis de frecuencia de cada serie de máximos y considerar el valor asociado con un período de retorno de 100 años como representativo del máximo histórico.
- Reducción al nivel de 1000 hPa de los valores determinados en el punto anterior.
- Determinación del valor medio areal del máximo punto de rocío en superficie persistente 12 horas asociado a un período de retorno de 100 años (reducido a 1000 hPa). Se estima en base a los valores determinados en el punto anterior.
- Cálculo del coeficiente de maximización correspondiente a cada tormenta. Se define como el cociente entre el agua precipitable máxima asociada a un período de retorno de 100 años y el valor correspondiente a cada evento, obtenidos a partir de los respectivos puntos de rocío en superficie (1000 hPa) persistentes 12 horas medios areales. En caso que la cuenca no esté al nivel medio del mar, deben efectuarse las correcciones pertinentes.
- Estimación de las tormentas maximizadas. Se multiplican los valores en cada punto de la grilla del campo diario de precipitación por el respectivo coeficiente de maximización.

En la Figura 3.2.2 se presenta un esquema del proceso de maximización.

Figura 3.2.2. Esquema del proceso de maximización por punto de rocío

3.3. Información utilizada

Se efectuó una selección de tormentas importantes sobre la cuenca del río Limay, en función de los caudales máximos registrados.

Se decidió analizar las tormentas que hubieran provocado caudales medios diarios superiores a 3000 m³/s en Paso Limay y de las cuales se dispusiera de suficiente información.

Los episodios seleccionados para el análisis de las tormentas resultan representativos de los procesos hidrológicos en la cuenca debido a que muestran distintas combinaciones de caudales y volúmenes críticos. Los caudales máximos versus los volúmenes asociados de la crecida en Paso Limay (ingreso a Piedra del Aguila) están representados adimensionalmente en la Figura 3.3.1.

Figura 3.3.1. Caudales y volúmenes adimensionales en Paso Limay

El análisis de las tormentas se hizo a nivel diario debido a que éste es el límite impuesto por la observación pluviométrica diaria y no se cuenta con información pluviográfica.

Se trabajó con los datos de las estaciones pluviométricas ubicadas en la cuenca en estudio y zonas marginales. Se definió como área de análisis de las tormentas la limitada por los paralelos 38° 00' S y 42° 00' S, el meridiano 67° 30' W y el límite argentino-chileno.

3.4. Análisis de las tormentas seleccionadas

Para cada evento seleccionado, se efectuó un trazado preliminar de los campos de precipitación en escala diaria, utilizando la técnica de análisis espacial objetivo, con el propósito de detectar singularidades que pudieran estar asociadas a la presencia de datos erróneos. Se procedió a reemplazar los datos considerados erróneos por una estimación basada en la estructura del campo diario analizado. Este proceso se aplicó en forma iterativa hasta alcanzar el nivel del campo diario de precipitación definitivo.

Una vez corregidos los campos diarios, se seleccionaron los episodios significativos de precipitación dentro de cada intervalo y se analizaron los campos de precipitación acumulada para la duración total de las tormentas de los años 1944, 1945, 1981, 1993 y 2001 esta información puede observarse en las Figuras 3.4.1 a 3.4.4.

Se presenta en la Figura 3.4.5 la secuencia de mapas de precipitación diaria durante el evento de 1985 y en la Figura 3.4.6 la acumulada para toda la tormenta de 1985. Este episodio fue seleccionado para un análisis sinóptico de mayor detalle debido a su importancia (evento que origina la CMP como se concluye en 4.4.2), caracterizado por la frecuencia de frentes y perturbaciones que pasaron por la región en estudio.

Los campos de precipitación diaria correspondientes a las demás tormentas seleccionadas se incluyen en el Anexo III, lo mismo que las situaciones sinópticas correspondientes.

Durante mayo de 1985 la cuenca ha estado bajo la influencia del pasaje por la Patagonia de frecuentes sistemas de baja presión con y sin frentes fríos (FF) asociados. Se

ha observado la influencia de estos sistemas que pasaron por la región durante el transcurso de los días 20 (FF), 22 (parte delantera de vaguada), 23, 24 (FF), 26 (FF), 29 y 30 (FF) de mayo de 1985.

Se resume a continuación una descripción de la situación meteorológica observada entre los días 20 y 31 de mayo de 1985 de acuerdo a los datos obtenidos de las cartas del tiempo del SMN:

Entre los días 20-21 de mayo había flujo de aire con componente del sur que dio por resultado temperaturas bajas, alcanzando –2°C el día 22 en la estación Bariloche Aero. A partir de este día el aire corre con componentes del norte y oeste por lo cual se entra al período de tormenta sin heladas, con mayores temperaturas entre los días 23 - 26 de mayo. En este período se midió la mayor cantidad de precipitación y se registraron lluvias intensas, comenzando los registros de nieve el día 26 de mayo.

Desde el 27 de mayo, con la entrada de aire muy frío se registraron heladas nuevamente. Bariloche registró –1°C como temperatura mínima. La precipitación en forma de nieve continuó hasta el día 29 de mayo de acuerdo a los registros disponibles.

En la Tabla 3.4.1 se presentan las características del tiempo entre el 20-31 de mayo de 1985.

Día	T _{min} (°C)	Heladas	T _{9 horas} (⁰C)	Viento	Tipo precipitación en la cuenca
20	1	Si*	4	(SW)	ligera-moderada
21	2	Si*	2	WSW	ligera-moderada
22	-2	Si	4	NNW	ligera-moderada
23	1	No	7	Ν	intensas
24	4	No	7	(WSW)	ligeras-intensas
25	3	No	4	(WSW)	moderadas
26	1	No	1	(SW)	ligeras-regular intensidad- nieve
27	-1	Si	2	calma	ligeras-moderadas-nieve
28	1	Si	1	calma	moderadas
29	2	No**	6	NW	débiles-moderadas-nieve
30	3	Si	4	W	ligeras
31	1	Si	3	W	ligeras

Tabla 3.4.1 Observaciones en Bariloche Aero durante mayo 1985

Período tormenta sombreado

Valores en negrita estimados con Chapelco o El Bolsón

* Heladas en la Patagonia en general

** Heladas en la Patagonia sur

Cabe aclarar que los puntos de rocío máximos persistentes 12 horas considerados para el coeficiente de maximización corresponden al día 24 de mayo, contando este día con el aire relativamente más cálido en el intervalo más amplio de 10 días: 20-31 de mayo.

Al considerar los datos provenientes de las cartas sinópticas durante la ocurrencia de la tormenta se presentó aire con temperaturas superiores a 0°C hasta el día 26 de mayo, al nivel de la estación con observaciones. Se observa sí, la presencia de aire frío en la Patagonia desde el 27 al 31 de mayo de 1985, después del intervalo seleccionado para la tormenta.

Se considera que la tormenta de mayo de 1985 es muy útil para la actualización de la crecida máxima probable, por los mecanismos de ascenso adicionales que ha tenido el aire sobre la cuenca.

Precipitación acumulada [mm] del 26 al 30 de junio de 1944

Precipitación acumulada [mm] del 10 al 13 de julio de 1944

Figura 3.4.1

Precipitación acumulada [mm] del 27 al 30 de mayo de 1945

Precipitación acumulada [mm] del 9 al 14 de junio de 1945

Figura 3.4.2

5700000

Ô

°o

Precipitación acumulada [mm] del 21 al 23 de mayo de 1981

Figura 3.4.3

Precipitación acumulada [mm] del 24 al 28 de mayo de 2001

Precipitación acumulada [mm] del 3 al 8 de junio de 2001

Figura 3.4.4

26 de mayo

27 de mayo

Figura 3.4.6. Tormenta del 23 al 27 de mayo de 1985 Precipitación acumulada [mm]

3.5. Maximización por punto de rocío

La maximización de una tormenta requiere la identificación del contenido de agua precipitable en esa tormenta y del máximo estimado para esa misma región y esa misma época del año. Éstos pueden ser estimados en base a las respectivas temperaturas de rocío en superficie, persistentes 12 horas, reducidas al nivel de referencia de 1000 hPa, teniendo en cuenta la altitud media de la cuenca.

Como el flujo de humedad tiene un efecto apreciable sobre la precipitación proveniente de una tormenta, la humedad debe persistir por varias horas para ser significativa sobre la precipitación. Además, las observaciones aisladas de punto de rocío pueden estar expuestas a errores, por lo tanto los valores de punto de rocío para estimar el contenido de humedad de una columna de aire deben estar basados en varias observaciones consecutivas. En general es usado el máximo punto de rocío persistente en 12 horas, obtenido a partir de observaciones horarias o cada 3 ó 6 horas. Los máximos históricos del punto de rocío persistente 12 horas son obtenidos de observaciones de largo período de registro, 50 años o más, en varias estaciones meteorológicas del área. En cada región debe estimarse el máximo punto de rocío persistente 12 horas para la época del año de la tormenta a maximizar.

No obstante que la fuente principal de humedad es el océano Pacífico, se trabajó con estaciones ubicadas a sotavento de los Andes debido a que el período de la información que se podía obtener de estaciones de la Dirección Meteorológica de Chile no incluía las fechas de todas las tormentas seleccionadas.

Dado que las longitudes de las series son heterogéneas y generalmente son cortas, la práctica usual es estimar los máximos históricos del punto de rocío persistentes 12 horas en superficie, estimando una función de distribución con los datos y tomando el valor para un período de retorno de 100 años. Examinando registros de gran longitud, se ha observado que este valor es aproximado al máximo.

Se aplicó la función de densidad de probabilidades generalizada de valores extremos (GEV, Generalized Extreme Value) para estimar el punto de rocío persistente 12 horas asociado con una recurrencia de 100 años para cada serie de valores máximos. La función de distribución generalizada de valores extremos (GEV) tiene tres parámetros y presenta como caso particular la función de densidad de probabilidades de Gumbel cuando el parámetro de forma es igual a cero.

En este estudio los parámetros de las funciones de distribución de probabilidades GEV y Gumbel fueron estimados (Greenwood et al., 1979) por el método de los Momentos de Probabilidad Ponderada (MPP).

El análisis de la función de valores extremos más adecuada para representar las series de máximos de los puntos de rocío consistió en estimar el parámetro de forma y aplicar el test de Hosking et al. (WMO, 1989), que considera como hipótesis nula que la distribución es EV1 y como hipótesis alternativa que es una GEV.

3.6. Maximización de cada tormenta

La maximización de una tormenta consiste en multiplicar las cantidades observadas de precipitación por el coeficiente de maximización r_m, calculado como el cociente del agua precipitable con una recurrencia de 100 años W_m respecto del agua precipitable observada durante la tormenta W_t.

$$r_m = W_m / W_t$$

Los valores de agua precipitable usados para determinar W_m y W_t corresponden a la columna de atmósfera con base en la superficie del terreno y tope en 300 hPa. En la práctica se calcula el agua precipitable contenida entre 1000 y 300 hPa y se le resta la correspondiente a la capa comprendida entre 1000 hPa y la altitud media de la cuenca, que se estimó en 1200 m a partir de la curva hipsométrica (2.1.1).

Para la estimación de W_m para cada tormenta, se calculó el valor asociado a un período de retorno de 100 años para la serie de máximos anuales del punto de rocío persistente 12 horas de cada estación para el mes correspondiente. En las Tablas 3.6.1 y 3.6.2 se presentan los valores máximos asociados a un período de retorno de 100 años al nivel de cada estación y reducidos al nivel de 1000 hPa, respectivamente, para los meses correspondientes a las tormentas seleccionadas.

En la Figura 3.6.1 se presentan los campos de punto de rocío persistente 12 horas al nivel de 1000 hPa correspondientes al período de retorno de 100 años para los meses de mayo, junio y julio. A partir de ellos se estimaron las temperaturas de rocío medias areales para la cuenca.

Para el cálculo de W_t para cada tormenta se usaron los valores de punto de rocío persistente 12 horas para cada estación. En las Tablas 3.6.3 y 3.6.4 se presentan los valores correspondientes al nivel de la estación y reducidos al nivel de 1000 hPa, respectivamente.

En las Figuras 3.6.2 a 3.6.6 se presentan los campos de punto de rocío persistente 12 horas al nivel de 1000 hPa para las tormentas 1944, 1945, 1981, 1985, 1993 y 2001, usados para estimar los valores medios areales para la cuenca.

Estación	Мауо	Junio	Julio
Bariloche Aero	11.7	10.2	8.3
Cipolletti	14.1	10.9	10.9
Piedra del Aguila	14.5	12.5	9.2
Las Lajas	12.9	6.7	8.5
Cutral Co	12.7	10.3	10.9
El Bolsón	15.3	11.7	10.5
Maquinchao	9.3	10.9	8.7

Tabla 3.6.1. Puntos de rocío persistentes 12 horas (°C) máximos estimados para un período de retorno de 100 años, al nivel de la estación

Tabla 3.6.2. Puntos de rocío persistentes 12 h	horas (°C) máximos estimados para un período de
retorno de 100 año	os, al nivel de 1000 hPa

Estación	Мауо	Junio	Julio
Bariloche Aero	15.6	14.3	12.6
Cipolletti	15.3	12.1	12.1
Piedra del Aguila	16.6	14.6	11.5
Las Lajas	16.2	12.8	12.2
Cutral Co	15.6	13.3	13.9
El Bolsón	16.7	13.2	12.0
Maquinchao	13.8	15.2	13.3

Estación	26-30 junio 1944	10-13 julio 1944	27-30 mayo 1945	9-14 junio 1945	21-23 mayo 1981	23-27 mayo 1985	23-28 junio 1993	24-28 mayo 2001	3-8 junio 2001
Bariloche Aero	2.9	4.7	6.9	9.0	6.4	3.3	5.0	6.0	4.0
Cipolletti	-0.9	-1.6	12.1	5.9	60	4.7	6.3		
Piedra del			4.4	4.6					
Las Lajas			9.0	4.3					
Cutral Co	-1.0	3.5	4.2	2.6				6.4	4.5
El Bolsón		7.3	9.9	10.9	7 1	4.4	5.0	6.4	5.0
Maquinchao	-2.0	4.4		7.6	3.8	1.4	3.6	4.0	2.1

Tabla 3.6.3. Puntos de rocío persistentes 12 horas (°C) durante los intervalos a maximizar, al nivel de la estación

Tabla 3.6.4: Puntos de rocío persistentes 12 horas (°C) durante los intervalos a maximizar, al nivel de 1000 hPa

Estación	26-30 junio 1944	10-13 julio 1944	27-30 mayo 1945	9-14 junio 1945	21-23 mayo 1981	23-27 mayo 1985	23-28 junio 1993	24-28 mayo 2001	3-8 junio 2001
Bariloche Aero	7.6	9.5	11.3	13.0	10.9	7.9	9.7	10.6	8.6
Cipolletti	0.6	0.0	13.1	7.0	7.4	6.1	7.8		
Piedra del Aguila			6.9	7.1					
Las Lajas			12.5	8.9					
Cutral Co	2.6	7.0	7.8	6.0				9.8	8.0
El Bolsón		9.0	11.7	12.5	8.7	6.1	6.7	8.1	6.9
Maquinchao	3.0	9.2		12.1	8.7	6.7	8.6	8.7	7.1

En la Tabla 3.6.5 se presentan los valores de W_t , W_m y r $_m$ para cada tormenta estudiada.

Tormenta Parámetro	26-30 junio 1944	10-13 julio 1944	27-30 mayo 1945	9-14 junio 1945	21-23 mayo 1981	23-27 mayo 1985	23-28 junio 1993	24-28 mayo 2001	3-8 junio 2001
Trocío* (°C) **	6.2	9.0	10.4	10.2	10.1	7.5	9.2	10.1	8.3
W _{1000-300 hPa} (mm)	15.2	19.0	21.8	21.4	21.2	17.0	19.4	21.2	18.3
W _{1200 m} (mm)	7.2	9.0	9.4	9.2	9.1	8.0	9.0	9.1	8.3
Diferencia W (mm)	8.0	10.0	12.4	12.2	12.1	9.0	10.4	12.1	10.0
Trocío* 100 años**	13.9	12.0	16.2	13.9	16.2	16.2	13.9	16.2	13.9
W ₁₀₀₀₋₃₀₀ 100 años	29.8	25.0	36.8	29.8	36.8	36.8	29.8	36.8	29.8
W _{1200 m} 100 años	11.9	11.0	14.2	11.9	14.2	14.2	11.9	14.2	11.9
Diferencia W (mm)	17.9	14.0	22.6	17.9	22.6	22.6	17.9	22.6	17.9
Coeficiente maximización r _m	2.24	1.40	1.82	1.47	1.87	2.51	1.72	1.87	1.79

Tabla 3.6.5 Coefici	entes de	maximiza	ación
---------------------	----------	----------	-------

* 1000 hPa

** Valor medio areal en la cuenca

La maximización de cada tormenta consistió en multiplicar los valores de cada punto de la grilla del campo diario de precipitación por el respectivo coeficiente de maximización.

En las Figuras 3.6.7 y 3.6.8 se presentan los mapas de la tormenta maximizada de 1985 que fueron utilizados como el escenario seleccionado para la CMP (4.4.2).

Los mapas de precipitación maximizada diaria y acumulada correspondientes a los otros eventos seleccionados se adjuntan en el Anexo III.

Junio TR media areal = 13.9 °C

TR media areal = 12.0 °C

Figura 3.6.1

Figura 3.6.3

Figura 3.6.4

Figura 3.6.5

Tormenta 24 al 28 de mayo de 2001

TR media areal = 8.3 °C

TR media areal = 10.1 °C

Figura 3.6.6

Tormenta maximizada del 23 al 27 de mayo de 1985. Precipitación [mm].

Cuarto día

Tormenta maximizada del 23 al 27 de mayo de 1985. Precipitación acumulada [mm]

Figura 3.6.8

Tormenta maximizada 24 al 28 de mayo de 2001 Precipitación [mm]

Figura 3.6.9

Tormenta maximizada 3 al 8 de junio de 2001 Precipitación [mm]

Figura 3.6.10

4. ESTUDIOS HIDROLÓGICOS

4.1. Determinación de las condiciones antecedentes para la CMP

Se realizó la tarea de separación de las componentes del hidrograma (caudal total) en caudal directo y caudal base. Esta separación permitió además, contar con información adicional para la calibración y verificación de los modelos que se utilizaron en el estudio.

La separación se realizó con un método clásico que consiste en prolongar la curva de agotamiento anterior a la crecida hasta un punto ubicado debajo del caudal máximo. Luego se une este último punto con otro ubicado en la rama descendente del hidrograma y que indica un cambio en el origen del caudal.

Se analizaron 16 crecidas observadas en Paso Limay. Estas crecidas corresponden al período 1944-2001 y se estimaron los volúmenes de caudal directo con el propósito de definir la lámina escurrida para cada evento.

El estudio de las formas de los 16 hidrogramas seleccionados mostró que se observan dos casos claramente diferenciados. El primero consiste en las crecidas que son la respuesta asociada con un evento simple de precipitación (ver Figuras 4.1.2 y 4.1.3 crecidas años 1951, 1958, 1984, 1993 y 2001 y Tabla 4.1.1) y un segundo tipo de hidrograma que muestra la respuesta de la cuenca a una sucesión de eventos de lluvia (ver Figuras 4.1.1 y 4.1.3 crecidas años 1944, 1945, 1949 y 2001 Tabla 4.1.1). En la Tabla 4.1.1 se detallan las características principales de las crecidas analizadas. Un análisis del caudal directo máximo estimado indica que las crecidas más importantes desde ese punto de vista son 1984 y 1993.

	(Caudal Tota	I	Caudal Directo			
Año	Q pico [m³/s]	Fecha Q pico	Duració n [días]	Qdir pico [m³/s]	Vol Qdir [hm³]	Qdir med [m ³ /s]	
1944	3170	29 - jun	18	2368	1291	830	
	3605	14 - jul	13	2536	837	745	
1945	4785	31 - may	18	3863	1515	974	
	3665	11 - jun	14	2235	1010	835	
1949	4270	28 - may	30	3334	3292	1270	
	3795	16 - jun	12	2000	673	649	
1951	3565	18 - jul	29	2764	2006	820	
1954	3715	16 - ago	20	3257	1926	1024	
1958	4325	21 - jul	20	3350	2097	1214	
1972	3404	15 - ago	23	2421	1598	826	
1981	3654	24 - may	15	2556	1252	966	
1984	4594	18 - jul	17	4074	1555	1059	
1985	3104	28 - may	24	2498	1925	1014	
1993	4468	26 - jun	16	3596	1649	1193	
2001	3029	28 - may	27	2836	1925	825	
	4209	08 - jun	26	3089	2835	1022	

Tabla 4.1.1. Crecidas en Paso Limay

En la Tabla 4.1.2 se detallan los coeficientes de escurrimiento obtenidos con el procedimiento descrito. Es de notar el elevado valor (0.52) del coeficiente de escurrimiento de la crecida del 08/06/01 seguramente ocasionado por la condición antecedente generada por el evento inmediatamente anterior.

	Tor	menta			Crecida			
Año	Fecha	Volumen precipitado (hm ³)	Fecha	Duración (días)	Volumen escurrido (hm ³)	Caudal base al comenzar la crecida (m ³ /s)	Caudal base al finalizar la crecida (m ³ /s)	Coef. de escorren- tía
1944 T1	26-jun al 30-jun	3644	27-jun al 14-jul	18	1291	885	1069	0.35
T2	10-jul al 18-jul	3197	12-jul al 24-jul	13	837	1001	1375	0.26
1945 T1	26-may al 30-may	3699	28-may al 14-jun	18	1515	1075	1550	0.41
T2	09-jun al 16-jun	3098	09-jun al 22-jun	14	1010	1106	1650	0.33
1981	18-may al 29-may	3741	21-may al 04-jun	15	1252	1350	1721	0.33
1985	18-may al 03-jun	7254	22-may al 14-jun	24	2103	665	1275	0.29
1993	18-jun al 03-jul	6165	24-jun al 09-jul	16	1649	957	1183	0.27
2001 T1	18-may al 01-jun	7442	20-may al 15-jun	27	1925	192	632	0.26
T2	02-jun al 27-jun	5490	04-jun al 29-jun	26	2835	1325	975	0.52

Tabla 4.1.2 Caracterización de las crecidas

Figura 4.1.2

4.2. Implementación del modelo hidrológico

La modelación del proceso hidrológico se llevó a cabo contemplando las limitaciones del modelo HEC-1 para algunos procesos involucrados en la cuenca del río Limay.

Así es que en las cuencas lacustres se seleccionó una metodología que permitiera simular el efecto de almacenamiento en los lagos, para representar el proceso de transformación precipitación-caudal y un método empírico que contempla las componentes que intervienen en el balance de energía para simular la fusión producida por la precipitación sobre el paquete de nieve.

El modelo HEC-1 fue implementado para simular el proceso precipitaciónescurrimiento en las subcuencas intermedias y bajas, y los resultados de las simulaciones en las cuencas lacustres fueron procesados como información de entrada al modelo.

4.2.1. Simulación en las cuencas lacustres

4.2.1.1. Metodología

Las precipitaciones invernales en la cuenca del río Limay son las que producen, en la mayoría de los casos, los caudales máximos anuales.

El análisis de las series de Equivalente Agua Nieve (EAN), obtenidas de los Informes Nivológicos de la Autoridad Interjurisdiccional de las Cuencas de los ríos Limay, Neuquén y Negro (AIC, 1994; 1997), muestran que las cuencas lacustres poseen en los meses de junio - agosto entre un 30% y un 80% de la acumulación nival máxima anual.

Esta situación hizo necesario estudiar la contribución de la fusión nival con el propósito de maximizar las componentes del escurrimiento superficial en la estimación de la Crecida Máxima Probable (CMP).

En este estudio, en el que el proceso de precipitación es el dominante, el objetivo fue seleccionar una metodología que permitiera representar el proceso de transformación precipitación-caudal y el de fusión por precipitación sobre cubierta de nieve.

Las cuencas simuladas fueron las correspondientes a los Lagos Aluminé (301), Quillén (305), Tromen (308), Huechulafquen (313), Lolog (314), Hermoso (317), Falkner (318), Traful (321) y Nahuel Huapí (323).

Se seleccionó la tormenta del 19/06 al 06/07/93, que produjo un caudal en la estación Paso Limay correspondiente al percentil 96% de la serie de máximos anuales en el período 1944-1996, para estimar los parámetros de todas las cuencas, con excepción de las317 y 323.

La verificación de la metodología propuesta se realizó para las tormentas utilizadas en la determinación de la PMP.

4.2.1.2. Proceso de transformación precipitación caudal

La teoría del hidrograma unitario instantáneo (HUI) fue utilizada para representar el proceso de transformación de precipitación efectiva en caudal directo. Esta teoría ha sido ampliamente empleada en hidrología para resolver problemas de diseño y pronóstico.

El modelo conceptual de HUI utilizado fue el modelo de Nash (1957), que considera el comportamiento de la cuenca como una serie de embalses lineales iguales y utiliza como forma analítica la función de densidad de probabilidades Gamma.

La estimación de los parámetros del modelo n, número de embalses lineales y k, tiempo de permanencia en cada embalse, fue realizada por el método de los momentos.

La precipitación efectiva se obtuvo descontando del hietograma de precipitación total las pérdidas iniciales y las producidas por el proceso de infiltración.

El proceso de infiltración fue simulado mediante un método simple denominado Índice ϕ (Chow et al. 1994), que considera una tasa de pérdidas constante para cada intervalo de tiempo. El valor ϕ fue obtenido calculando el coeficiente de escurrimiento (CE) de la cuenca. Este último valor fue calculado en función de los datos de precipitación total y de escurrimiento directo.

El escurrimiento directo fue calculado separando en el hidrograma total observado el flujo base. Esta separación se realizó considerando un aporte constante de caudal base desde el momento en el que comienza el escurrimiento directo hasta que los caudales son igualados en la curva de recesión.

En la Tabla 4.2.1.2.1, se presentan las estaciones de precipitación y de caudal utilizadas para cada cuenca.

Cuenca	301	305	308	313	314	317	318	321	323
	6800.04	6250.02	6210.07	7200.01	7210.07	4150.01	4150.01	4190.01	4190.01
	6820.04	6210.07	7200.01	7210.07	10000.03	4190.01	4190.01	8811.01	8811.01
Est. Precipita-	6000.03	6200.04	6100.06	7310.02	7310.02		2240.01	2240.01	8000.22
				7000.03			4100.03	2200.02	11000.03
cion				6100.06				8000.11	2000.10
									8000.11
									2240.01
Est. Caudal	6000.03	6200.04	6100.06	7000.03	7300.02	4130.01	4160.04	2200.02	2000.10

Tabla 4.2.1.2.1. Código de las estaciones utilizadas en la simulación

Las series de precipitación diaria en las estaciones con observaciones faltantes fueron rellenadas mediante un modelo de regresión lineal múltiple considerando la información disponible en la estación más cercana. Las variables independientes consideradas fueron la diferencia de latitud, longitud y altitud y la dependiente fue la diferencia de precipitación, a escala anual y mensual.

4.2.1.3. Determinación de la componente de fusión nival

Con el propósito de maximizar las componentes del escurrimiento superficial en la estimación de la CMP se decidió utilizar una metodología que permitiera calcular la contribución de la fusión nival al hidrograma de salida de las cuencas.

La fusión se produce cuando el cambio en el almacenamiento de energía del paquete de nieve (Q_0) es positivo. El cálculo de Q_0 implica realizar el balance de energía

para la superficie de nieve, el cual requiere mediciones de radiación, presión de vapor, velocidad del viento, precipitación y temperatura a distintas alturas.

Como en general esta información no se encuentra disponible, se han desarrollado numerosos métodos empíricos que relacionan fusión y escurrimiento con índices de fácil medición. El índice de fusión más comúnmente usado es la temperatura del aire (T_a).

Para este estudio se seleccionó el método del índice de temperatura del aire presentado por Anderson (1978a) y utilizado por el U.S. National Weather Service, de acuerdo a Bras (1990).

Para determinar la contribución de la fusión producida por la tormenta, se asume que el paquete de nieve está maduro y que posee una profundidad tal que permite la fusión continua durante la tormenta, que la radiación solar de onda corta es despreciable, que la cobertura nubosa irradia como cuerpo negro con una temperatura próxima a la del aire y que la humedad relativa es alta. En este estudio se consideró una humedad relativa del 90% (Anderson, 1978a).

El balance de energía, teniendo en cuenta estas hipótesis, está compuesto por los siguientes términos, radiación neta (Q^{*}) , calor advectivo producido por la precipitación (Q_{v}) , energía consumida por condensación (Q_{e}) y transferencias de calor sensible (Q_{h}) .

El término de radiación neta es:

$$Q^{*} = Q_{a} - Q_{bs}$$

= $\sigma (T_{a} + 273)^{4} - \sigma (T_{s} + 273)^{4}$
= 49.56 x 10⁻¹⁰ (T_a + 273)⁴ - 27 [cal cm⁻²hr⁻¹] (4.2.1.3.1)

donde:

Q_a radiación de onda larga

Q_{bs} emisión onda larga desde la superficie del suelo

 T_s temperatura superficie de nieve, igual a 0°C

T_a temperatura del aire en °C

 σ constante de Stefan-Boltzmann, igual a 0.826 x 10⁻¹⁰ cal cm⁻² min⁻¹ °K⁻⁴.

El término de calor advectivo producido por la precipitación es:

$$Q_{\nu} = C_{P} \rho_{w} P T_{a} \quad \left[\text{cal cm}^{-2} \text{ hr}^{-1} \right]$$
(4.2.1.3.2)

donde:

C_P calor específico

 $\rho_{\rm w}$ densidad del agua, igual a 1 g cm⁻³

P precipitación en cm.

Para el cálculo de la CMP se asume que no hay acumulación nival durante la tormenta, es decir la precipitación es líquida y en consecuencia el factor C_P es igual a 1 cal $g^{-1} \circ C^{-1}$.

Dado que la nieve está a 0°C, la presión de vapor de saturación en la superficie es 6.11 mb y como la humedad relativa fue asumida igual al 90%, la presión de vapor del aire es igual a 0.9e_{sat}. Estas consideraciones hacen que la energía consumida por condensación y transferencias de calor sensible sea:

$$Q_e + Q_h = f(U) \rho_w L_e \left[\left(0.9 \, e_{sat} - 6.11 \right) + C_B \, P_a \, T_a \right] \left[\text{cal cm}^{-2} \text{hr}^{-1} \right]$$
(4.2.1.3.3)

donde:

f(U) función empírica de la velocidad del viento en cm mb⁻¹ hr⁻¹

 L_e calor latente de evaporación, igual a 600 cal g⁻¹

*e*_{sat} presión de vapor de saturación en mb

 C_B constante de la relación de Bowen, igual a 0.61x 10⁻³ °C⁻¹

*P*_a presión del aire en mb.

El cambio de energía disponible en el paquete de nieve para provocar la fusión cuando $T_a > 0$ se obtiene sumando los términos anteriores, resultando Q_0 en unidades de cal cm⁻² hr⁻¹:

$$Q_0 = 49.56 \times 10^{-10} (T_a + 273)^4 - 27 + PT_a + f(U) 600 [(0.9 e_{sat} - 6.11) + 0.61 \times 10^{-3} P_a T_a]$$
(4.2.1.3.4)

La presión de vapor de saturación e_{sat} en milibares fue estimada (Anderson, 1978a) como:

$$e_{sat} = 2.749 \ge 10^8 \exp\left[\frac{-4278.6}{T_a + 242.8}\right]$$
 (4.2.1.3.5)

La presión P_a fue calculada con la siguiente relación presión - elevación:

$$P_a = 1012.4 - 11.34 z + 0.00745 z^{2.4}$$
(4.2.1.3.6)

donde z es la elevación en cientos de metros.

La función f(U) fue estimada (Anderson, 1978b) como:

$$f(U) = 2 \times 10^{-4} U \tag{4.2.1.3.7}$$

donde U es la velocidad del viento en km hr⁻¹ medida a 1m de altura.

El total de agua producida por fusión fue calculado como:

$$H = \frac{Q_0}{L_m \rho_w \theta} \quad \left[\operatorname{cm} \operatorname{hr}^{-1} \right]$$
(4.2.1.3.8)

El calor latente de fusión L_m a 0°C es aproximadamente igual a 80 cal g⁻¹ y θ es la calidad térmica del paquete de nieve, siendo el valor típico para un paquete maduro de 0.97 (Eagleson, 1970).

4.2.1.4. Estimación de parámetros para la simulación del proceso de transformación precipitación-caudal

Se seleccionó la tormenta del 19/06 al 06/07/93 para estimar los parámetros de todas las cuencas con excepción de la 317 y 323, en las cuales la separación de hidrogramas para esa fecha resultó muy complicada. La serie de caudales máximos anuales de la estación Paso Limay para el período 1944-1996 muestra que esta tormenta produjo un caudal correspondiente al percentil 96%.

Para las cuencas 317 y 323 se seleccionaron las tormentas del 16/7 al 20/7/93 y 12/5 al 24/5/94, respectivamente.

Los resultados de la estimación de parámetros para las tormentas seleccionadas se presentan en la Tabla 4.2.1.4.1.

Cuenca	301	305	308	313	314	317	318	321	323
Área (km²)	932.32	294.49	416.16	1022.65	466.95	262.57	406.43	918.16	3908.80
CE	0.55	0.76	0.90	0.59	0.72	0.68	0.94	0.33	0.24
N	2.24	2.93	1.59	2.99	3.61	1.93	1.68	1.88	2.40
<i>k</i> (hr)	103.80	28.87	90.59	85.09	47.21	45.02	64.69	66.60	159.29

Tabla 4.2.1.4.1 Resultados de la estimación de parámetros

4.2.1.5. Estimación del caudal producido por fusión

Se utilizó la ecuación (4.2.1.3.8) a escala diaria para estimar la fusión producida por la tormenta del 19/06 al 06/07/93. En esta fecha las dos estaciones con registros de EAN, Casa Quila 1800 y El Mocho, muestran acumulaciones próximas al 35% de la máxima anual (AIC, 1994).

Las componentes del balance de energía fueron calculadas según (4.2.1.3.1), (4.2.1.3.2) y (4.2.1.3.3) suponiendo los valores de temperatura del aire (T_a), presión (P_a) y velocidad del viento (U) concentrados a una altura (z) correspondiente a la media de las subcuencas.

La estimación de la temperatura a la altura z se realizó en función de las relaciones temperatura – elevación obtenidas del análisis de la información disponible en las cuencas o en zonas próximas a ellas y aplicando estos resultados a estaciones de referencia seleccionadas.

Para la fecha considerada, las estaciones 6200.04 y 7100.01 fueron las únicas que contaban con observaciones de temperatura. Las series de las otras estaciones fueron rellenadas utilizando un método propuesto por Fernández y Fornero (1997) que considera las diferencias de altitud y de radiación neta al borde de la atmósfera para estimar la diferencia de temperatura entre la estación a rellenar y la que posee observaciones.

Debido a la falta de series de tiempo de velocidad del viento, la estimación de la función empírica que interviene en la ecuación (4.2.1.3.3) se realizó suponiendo una velocidad uniforme durante la tormenta y para todas las cuencas, igual a 25 km/hr. Según la escala de Beaufort, este valor corresponde al límite superior de una brisa moderada definida entre 19 y 26 km/hr (Petterssen, 1976).

Las imágenes satelitales NOAA-14 de alta resolución, proporcionadas por la AIC, contenían tomas realizadas desde el 23/10/94 al 29/5/99. Teniendo en cuenta el análisis de esta información (4.3.1) se fijó el área cubierta de nieve para la fecha de ocurrencia de la tormenta a fin de estimar los caudales producidos por la fusión.

Los caudales diarios fueron calculados suponiendo una superficie cubierta del 70% del área de la cuenca y un coeficiente de escurrimiento de 0.1, con excepción de la 317 en la que se utilizó un coeficiente de 0.7. Estos caudales fueron sumados al hidrograma obtenido por el HUI estimado.

4.2.1.6. Calibración y validación

Calibración

Con el propósito de estudiar el ajuste entre los caudales observados y simulados en la etapa de estimación y verificación de parámetros, se utilizaron estadísticos propuestos por la WMO (coeficiente de variación, error absoluto y relativo) y otras medidas que se encuentran en la literatura.

Estas medidas fueron:

- (i) Diferencia de caudales máximos simulado y observado en % [D Máx]
- (ii) Diferencia tiempo al pico simulado y observado en días [DTp]
- (iii) Coeficiente de variación [CV]
- (iv) Error absoluto en % [Eabs]
- (v) Error relativo en % [Erel]
- (vi) Raíz del error cuadrático medio relativo [RECMR]
- (vii) Coeficiente de Nash-Sutcliffe [R²]

donde :

$$DMax = \left[\frac{Q_{\max obs} - Q_{\max sim}}{Q_{\max obs}}\right] \times 100$$
$$CV = \frac{1}{OM} \left[\frac{1}{n} \sum_{k=1}^{n} e_{k}^{2}\right]^{1/2}$$
$$OM = \frac{Obs}{n}$$
$$Obs = \sum_{k=1}^{n} Qobs_{k}$$
$$Eabs = \frac{1}{Obs} \left[\sum_{k=1}^{n} |e_{k}|\right]$$
$$Erel = \frac{1}{Obs} \left[\sum_{k=1}^{n} e_{k}\right]$$

$$RECMR = \left[\frac{1}{n}\sum_{k=1}^{n} \left(\frac{e_k}{Qobs_k}\right)^2\right]^{1/2}$$
$$R^2 = 1 - \frac{\sum_{k=1}^{n} e_k^2}{\sum_{k=1}^{n} (Qobs_k - OM)^2}$$

siendo $e_k = Qobs_k - Qsim_k$

A fin de estudiar la capacidad de la metodología propuesta para representar los procesos físicos que se producen durante una tormenta invernal, se analizaron dos situaciones; una en la que solo se considera el proceso de precipitación-caudal y otra en la que se considera además el caudal producido por la fusión.

En la Tabla 4.2.1.6.1 se presentan los resultados de las medidas utilizadas para evaluar el ajuste para las tormentas utilizadas en la estimación del HUI.

Dado que los HUI de las cuencas 317 y 323 no fueron estimados para la tormenta del 19/06 al 06/07/93, en la Tabla 4.2.1.6.1 se presentan también los resultados obtenidos para esa fecha.

	Fecha	DMáx	DTp	CV	Eabs	Erel	RECMR	R ²
301	10/6 6/7/02	-6.85	+1	0.08	6.81	4.05	0.086	0.89
	19/0-0/7/93	-6.85	+1	0.08	6.76	6.59	0.088	0.86
305	10/6 6/7/02	-4.47	+1	0.12	8.91	-0.01	0.119	0.95
	19/0-0/7/93	-7.52	+1	0.13	11.06	2.60	0.163	0.92
308	10/6 6/7/02	0.33	+2	0.24	16.22	1.08	0.170	0.71
	19/0-0/7/93	-0.56	+1	0.24	17.03	2.72	0.171	0.71
313	10/6 6/7/02	-3.02	-1	0.10	7.34	4.51	0.093	0.76
0.0	19/0-0/7/93	-3.02	-1	0.10	7.87	5.44	0.100	0.76
314	4 19/6-6/7/93	-1.34	+2	0.10	8.33	3.19	0.136	0.95
		-1.42	+2	0.11	8.79	5.37	0.154	0.95
	16/7 21/7/02	-4.43	-1	0.11	8.41	-0.04	0.110	0.93
317	10/7-31/7/93	-30.87	-1	0.20	13.11	4.66	0.147	0.78
•	40/0 0/7/00	20.01	-1	0.27	20.84	6.33	0.502	0.79
	19/0-0/7/93	-6.06	0	0.25	19.60	16.04	0.645	0.82
318	10/6 6/7/02	1.21	+1	0.18	10.26	3.15	0.478	0.91
	19/0-0/7/93	1.21	+1	0.19	10.74	3.72	0.480	0.90
321	10/6 6/7/02	16	+1	0.19	12.42	-0.31	0.24	0.82
-	19/0-0/7/93	7.6	0	0.17	12.94	3.97	0.28	0.79
	11/5 29/5/04	-0.9	+4	0.07	6.0	-0.34	0.065	0.92
323	11/0-20/0/94	-1.32	+5	0.10	9.0	6.20	0.108	0.84
	10/6 6/7/02	1.06	0	0.02	1.82	-1.32	0.023	0.95
	19/6-6/7/93	1.06	0	0.02	1.82	-1.32	0.023	0.95

Tabla 4.2.1.6.1. Resultados de la estimación de parámetros

Los valores resaltados corresponden a hidrogramas donde se incluyó la fusión.

Los resultados de la simulación del proceso de precipitación-caudal en las fechas de estimación de los HUI muestran valores de DMáx que están, en todos los casos, por debajo del 20% del caudal máximo observado.

Las medidas del ajuste global indican una buena reproducción del hidrograma observado para todas las cuencas. La 308 y 313 son las únicas que presentan valores de R^2 menores de 0.8 y la 308 un Eabs mayor del 15%.

Los resultados de la aplicación de los HUI estimados para las cuencas 317 y 323 a la tormenta del 19/6-6/7/93 indican un deterioro del ajuste para la 317. La inclusión de los caudales producidos por el proceso de fusión no mejora los resultados anteriores, con excepción de las cuencas 317 y 321 en las que se logra una mejora significativa en el valor de Dmáx. En las Figuras 4.2.1.6.1 a 4.2.1.6.4 se presentan los hidrogramas observados y simulados.

Validación

Las tormentas estudiadas para determinar la PMP se utilizaron en la verificación de la metodología de transformación precipitación-caudal aplicada, los resultados se muestran en la Tabla 4.2.1.6.2 y en las Figuras 4.2.1.6.5 a 4.2.1.6.10.

		DMax	DTp	CV	Eabs	Erel	RECMR	R ²
26-30 junio 10-13 julio 1944	301	1.9 -5.2	0 0	0.06	4.7	-1.26	0.06	0.90
	313	2.3 -22.3	+2 +2	0.14 0.27 0.21	12.97 24.77 17.94	-5.39 -24.77 -13.56	0.155 0.28 0.216	0.57 -6.35 -0.31
	323	-2.7 -6.4	0 -3	0.11	7.66	-6.74	0.11	-0.11
27-30 mayo 9-14 junio	301	6.0 5.0	+1 0	0.10	8.72	6.25	0.12	0.83
	313	-45.5 -59.8	+2 +4	0.51	46.05	-46.05	0.514	-52.20
1945	323	-0.2 4.8	+2 -1	0.03	2.19	1.15	0.025	0.92
	301	5.0	0	0.08	7.06	7.06	0.080	0.73
21-23	305	-4.3	0	0.05	4.38	-4.38	0.06	0.95
mayo 1981	308	19.7	+1	0.14	8.42	7.07	0.110	0.59
	314	-35.7	S/D	S/D	S/D	S/D	S/D	S/D
	318	-34.8	0	0.51	46.16	-46.16	0.484	-6.40
	321	-24.6	0	0.25	22.15	-22.15	0.253	-4.50
	301	-9.0	-2	0.30	23.21	-20.92	0.365	0.52
23-27 mayo	305	7.0	-1	0.43	38.30	16.81	0.418	-0.54
	313	-15.0	0	0.13	10.50	-8.68	0.106	0.83
	318	-34.8	-3	0.48	36.88	-29.47	0.623	-1.19
	321	-28.9	-5	0.93	101.78	-28.41	0.714	-0.35
1985	323	-13.0	0	0.16	13.46	-13.46	0.143	-0.12

 Tabla 4.2.1.6.2. Resultados ajuste tormentas observadas

		DMax	DTp	CV	Eabs	Erel	RECMR	R ²
	301	-19.0	+1	0.21	16.78	-13.6	0.296	0.90
	305	S/D						
	308	-50.0	+1	0.62	54.82	-54.82	0.570	-1.58
	313	-29.0	+1	0.24	15.43	-15.19	0.170	0.68
24-28	314	S/D						
mayo	317	-51.0	0	0.59	43.67	-41.75	0.657	-0.47
2001	318	-58.0	0	0.70	53.90	-51.24	1.073	-0.50
	321	-8.0	0	0.21	15.72	-6.06	0.280	0.81
	323	10.0	0	0.13	11.29	11.29	0.127	0.81
	301	0.6	+1	0.12	9.30	4.63	0.140	0.68
	305	S/D						
	308	-62.0	0	0.56	44.41	-42.78	0.476	-2.62
3-8 junio	313	-6.0	+2	0.11	9.60	-5.07	0.134	0.62
	314	S/D						
	317	-35.0	-1	0.47	35.74	-13.64	0.445	0.07
2001	318	-49.0	-1	0.45	38.33	-6.78	0.480	-0.61
	321	0.4	+1	0.38	33.54	32.92	0.434	-2.02
	323	11.0	-4	0.16	14.97	14.97	0.155	-0.54

Tabla 4.2.1.6.2. (cont.) Resultados ajuste tormentas observadas

La tabla anterior muestra un buen ajuste para las cuencas 301, 305 y 323. En las otras cuencas la función de transformación estimada tiende a sobrestimar los caudales simulados.

Esta tendencia del HUI a producir caudales superiores a los observados (Tabla 4.2.1.6.2) podría explicarse teniendo en cuenta que la estimación de parámetros se realizó para un evento de precipitación que produjo uno de los mayores caudales anuales registrados en la estación Paso Limay y que la acumulación nival al 1º de agosto de ese año fue comparable a los máximos históricos; 88% del máximo de 1984 en Casa Quila 1800 y 90% del máximo de 1983 en El Mocho (AIC, 1994).

El análisis de los valores de EAN acumulados al inicio de las tormentas analizadas muestran que éstos eran sensiblemente superiores para el evento utilizado en la estimación de parámetros. Esta información se presenta en la Tabla 4.2.1.6.3.

	EAN (mm)											
	23-28 junio 1993			23-27 mayo 1985			24-28 mayo 2001			3-8 junio 2001		
	Inicial	Final	Dif.	Inicial	Final	Dif.	Inicial	Final	Dif.	Inicial	Final	Dif.
Casa Quila 1600 (1600 m)		S/D		209	360	151	163	12	-151	121	315	194
Casa Quila 1800 (1716 m)	756	874	118	259	500	241	248	111	-137	247	431	184
El Mocho (1600 m)	505	571	67	162	322	160	105	74	-31	137	319	182
C° Mirador (1290 m)	S/D		S/D		69	56	-13	142	294	152		
C° Nevado (2240 m)	S/D		S/D		304	545	241	738	1069	331		

Tabla 4.2.1.6.3. Valores de EAN

4.2.1.7. Resultados y conclusiones

Con el propósito de maximizar las componentes del escurrimiento superficial en la estimación de la CMP, se seleccionó una metodología que permitiera representar el proceso de transformación precipitación-caudal y el de fusión para la Precipitación Máxima Probable.

El modelo de Nash (HUI) fue utilizado para la transformación precipitación-caudal y el método del índice de temperatura para el cálculo de la fusión.

Con excepción de las cuencas 317 y 323, los parámetros del HUI se estimaron para un evento de precipitación que se produjo cuando existía una considerable acumulación nival. Este evento originó uno de los mayores caudales registrados en Paso Limay.

La aplicación del método del índice de temperatura permitió estimar los caudales producidos por fusión y evaluar el desempeño de los HUI.

Los resultados del ajuste obtenido en la estimación y verificación de parámetros muestran que los HUI estimados son capaces de representar los dos procesos analizados en situación de lluvias intensas y de importante acumulación nival en todas las cuencas, excepto en la 317 y 321 (Tabla 4.2.1.6.1, tormenta 19/06-06/07/93) en las que la inclusión del caudal producido por fusión es necesaria.

Figura 4.2.1.6.1. Hidrogramas cuencas lacustres Calibración de parámetros

Figura 4.2.1.6.2. Hidrogramas cuencas lacustres Calibración de parámetros

Figura 4.2.1.6.3. Hidrogramas cuencas lacustres Calibración de parámetros

Figura 4.2.1.6.4. Hidrogramas de precipitación y fusión Cuencas de los lagos Hermoso y Traful y verificación tormenta de junio – julio 1993 Lago Nahuel Huapí
LAGO ALUMINE

Figura 4.2.1.6.5. Hidrogramas cuencas lacustres. Validación de parámetros

7-6

12-6

2001

17-6

2-6

0 ↓____ 23-5

28-5

Figura 4.2.1.6.6. Hidrogramas cuencas lacustres. Validación de parámetros

LAGO HUECHULAFQUEN

Figura 4.2.1.6.7. Hidrogramas cuencas lacustres. Validación de parámetros

LAGO HERMOSO

LAGO FALKNER

Figura 4.2.1.6.8. Hidrogramas cuencas lacustres. Validación de parámetros

LAGO FALKNER

LAGO TRAFUL

LAGO TRAFUL

Figura 4.2.1.6.9. Hidrogramas cuencas lacustres. Validación de parámetros

LAGO NAHUEL HUAPI

LAGO NAHUEL HUAPI

Figura 4.2.1.6.10. Hidrogramas cuencas lacustres. Validación de parámetros

4.2.2. Implementación del modelo HEC-1

El modelo HEC-1 fue implementado para simular el proceso precipitación-escurrimiento en las subcuencas intermedias y bajas.

4.2.2.1. Características del modelo HEC-1

Es un modelo desarrollado por el "Hydrologic Engineering Center" de Davis, California, organismo de investigación y desarrollo en hidrología perteneciente al Cuerpo de Ingenieros del Ejército de Estados Unidos. Es el modelo hidrológico de Iluvia-caudal más usado con fines de diseño y evaluación en Estados Unidos y uno de los modelos más difundidos a nivel mundial. Esta condición lo hace un modelo muy confiable para uso en diseño hidrológico e hidráulico.

El modelo posee 12 subrutinas de cálculo (HEC-1, 1998). Las que se han utilizado en este estudio son las siguientes:

- Cálculo de la precipitación media sobre la cuenca (subcuenca)
 - Precipitación histórica por estación
 - Aplicación de la Precipitación Máxima Probable

- Cálculo del hidrograma de escorrentía directa

- Hidrogramas medidos en puntos de control
- Hidrogramas sintéticos en subcuencas sin estaciones de medición de caudales
 - Soil Conservation Service
 - H. U. Clark
 - H. U. Snyder

- Datos de caudales

- Ingreso directo de hidrogramas
- Hidrogramas observados en puntos de control para calibración y verificación

- Flujo base

- Cálculo por calibración de los parámetros de la curva exponencial
- Intersepción e Infiltración
 - Pérdida inicial y tasa constante
 - Tasa de pérdida exponencial
 - Número de curva y abstracción inicial del Servicio de Conservación de Suelos de USA

- Tránsito de ondas por ríos

- Muskingum
- Puls Modificado
- Tránsito de ondas por embalses controlados o no
 - Solución de la ecuación del embalse por iteración
- Calibración de hidrogramas
 - Optimización de parámetros de hidrograma unitario
 - Optimización de parámetros de hidrogramas de traslado en ríos.

Nueva Versión del Modelo HEC-1 en entorno Windows-Modelo HEC-HMS

El modelo HEC-1, fue llevado a entorno Windows 9x ó NT presenta mejoras importantes en todo lo que hace a su interface gráfica (Graphical Users Interface). Es el Modelo HEC-HMS.

Esta característica lo transforma en un modelo más amigable en lo que se refiere al ingreso de datos y a la presentación de resultados, sobre todo en forma gráfica.

Por otra parte el modelo, en su versión de marzo de 2001 V.1.1 no incluye aún todas las capacidades del modelo HEC-1, no presenta la flexibilidad del HEC-1 en todas las opciones de ingreso de datos de lluvias y caudales y en general en el manejo de los procesos hidrológicos complejos. No incluye por ejemplo la rutina de traslado de ondas por embalses controlados. (Sí, en cambio, por embalses no controlados por descargadores y/o compuertas)

En relación con los algoritmos de cálculo de pérdidas, transformación de lluvia/caudal, traslado por ríos y calibración de parámetros (optimización) así como para simulación con futuras urbanizaciones, su capacidad es igual a la del HEC-1.

Capacidades y restricciones del HEC-1 (HEC-HMS)

- Es un modelo de evento. No hace simulación continua. No simula flujo base en periodos sin precipitaciones.
- No tiene limitaciones en el tamaño de la cuenca, en tanto se consideren subcuencas de dimensiones adecuadas en base a la geomorfología y al tipo de tormentas.
- No tiene limitaciones en el número de cuencas o tramos de río.
- No tiene limitaciones en relación al intervalo de tiempo (DT) a considerar, siempre y cuando el intervalo sea igual o menor que 0.29 del tiempo de retardo (Lag time) y debe ser igual para todas las cuencas de una misma corrida del modelo.
- En el tránsito de ondas simula ondas naturales suaves no las de fuerte componente inercial. No trabaja con las ecuaciones completas de Saint Vennant.

4.2.2.2. Topología de la simulación

En los esquemas siguientes se representan en forma diagramática las operaciones del modelo HEC-1 para simular las crecidas en la cuenca del río Limay hasta Paso Limay.

4.2.2.3. Calibración del modelo

La calibración del modelo HEC-1 se llevó a cabo utilizando la importante crecida de junio de 1993. Se seleccionó este evento debido a que AIC cuenta con una información hidrometeorológica muy completa sobre el mismo.

Función de optimización para hidrogramas y tasa de perdidas

La calibración de parámetros en hidrogramas unitarios y tasa de pérdidas es posible realizarla en las cuencas que cuentan con datos de caudales medidos en sus puntos de cierre.

Para ello el modelo HEC-1 considera como "función objetivo" que se usa como parámetro, la raíz cuadrada del cuadrado del promedio ponderado de la diferencia entre valores observados y valores calculados de caudales.

Se asume que esa diferencia será un mínimo cuando los parámetros a optimizar se encuentren en su valor óptimo.

$$f.obj. = \left[\sum_{i=1}^{n} (Qobs_i - Qcalc_i)^2 x \frac{wTi}{n}\right]^{1/2}$$
(4.2.2.3.1)

donde $n = n^{\circ}$ total de ordenadas que van de i = 1 a i = n.

wTi es el peso de la ordenada i del hidrograma computado como:

wTi =
$$\left(\frac{\text{Qobs}_i + \text{Qprom}_i}{(2.\text{Qprom})}\right)$$
 (4.2.2.3.2)

donde Qprom. es el promedio de la descarga observada.

Esta función pone énfasis en la reproducción de los caudales máximos, más que en los más bajos. Por ese motivo la optimización final se consigue "retocando" manualmente los parámetros hasta obtener un hidrograma que ajuste en valores altos y bajos y en volúmenes.

El mínimo de la "función objetivo" (función de optimización) se encuentra con la técnica de investigación univariada (Método del "gradiente").

La primera y segunda derivadas de la función objetivo se aproximan en la forma siguiente:

Si y = f(x) es la función objetivo (f.obj.)

$$\frac{\Delta y}{\Delta x} = \frac{f(xo + \Delta x) - f(xo)}{\Delta x}$$
(4.2.2.3.3)

$$\frac{\Delta^2 y}{(\Delta x)^2} = \frac{f(xo + 2\Delta x) - 2f(xo + \Delta x) + f(xo)}{(\Delta x)^2}$$
(4.2.2.3.4)

Con las ecuaciones (4.2.2.3.3) y (4.2.2.3.4) es posible determinar la dirección en que se dirige la función a un mínimo.

Si la ecuación (4.2.2.3.3) da un valor positivo, por ejemplo, la variable x (el parámetro) se debe aumentar en su valor, para aumentar la función objetivo o disminuir para disminuir la misma.

Si la ecuación (4.2.2.3.4) da un valor positivo, por ejemplo, la función es convexa hacia abajo y se está indicando la convergencia hacia un mínimo, y la divergencia hacia un máximo.

Usando entonces la técnica de aproximaciones sucesivas de Newton-Raphson, las ecuaciones (4.2.2.3.3) y (4.2.2.3.4) se pueden usar para estimar la raíz de la primera diferencia parcial de la función objetivo y por lo tanto el valor óptimo de la variable (parámetro) si se indica convergencia.

Esto se obtiene con:

$$x_{1} = x_{o} - \frac{\Delta y / \Delta x}{\Delta^{2} y / (\Delta x)^{2}}$$
(4.2.2.3.5)

Si se indica divergencia, un paso relativamente grande puede ser tomado en la dirección que mejore la función objetivo. El factor 1.5 se toma en el modelo para el paso.

Como el método, no asegura resultados, físicamente "razonables", el control sucesivo de los resultados, el análisis de los parámetros con criterio hidrológico y finalmente el ajuste "manual", se hace muchas veces necesario.

En la Tabla 4.2.2.3.1 se presentan las unidades hidrológicas, los puntos de calibración, de ingreso de datos y de control y en la Tabla 4.2.2.3.2 la estimación de los parámetros por el método de optimización.

Tabla 4.2.2.3.1.	Cuencas,	calibración	o ingreso	directo	y puntos	de contro
------------------	----------	-------------	-----------	---------	----------	-----------

Unidad Hidrológica		Área Km²	Puntos de Calibración (QO) ó Ingreso de Caudales (QI) (Se refiere a desagües desde lagos)	Puntos de Control
ID	Nombre			
301	Lago Aluminé	932.32	6000.03 (QI)	
302	Alto Aluminé	408.72	Q256 (QO) (*)	
303	Río Kilka	757.32	Q216 (QO)	
101				
304	Aluminé en Rahué	1428.20	Q076 (QO)	
102				6000.07 Rahué
305	Lago Quillén	294.49	6200.04 (QO)	
306	Río Quillén	402.15	Q036 (QO)	
103				
104				
307	Aluminé en Talhelum	1273.15	Q266 (QO)	
105				

	Unidad Hidrológica	Área Km²	Puntos de Calibración (QO) ó Ingreso de Caudales (QI) (Se refiere a desagües desde lagos)	Puntos de Control
ID	Nombre			
106				
308	Lago Tromen	416.16	6100.06 (QI)	
309	Río Malleo	487.14	Calibración indirecta	
107				
310	Catan Lil Superior	975.06	Calibración indirecta	
311	Catan Lil Inferior	1341.89	Calibración indirecta	
108				
109				
312	Arroyo Huechahue	555.12	Calibración indirecta	
110				6000.27 (Ea. Huechahue)
313	Lago Huechulafquen	1022.65	7000.03 (QI)	
314	Lago Lolog	466.95	7300.02 (QI)	
111				
315	Río Chimehuin	1168.62	Q097 (QO)	
112				7000.09 Pto. Confluencia
316	Bajo Collón-Curá	1699.29	Q074 (QO)	
113				
317	Lago Hermoso	262.67	4130.01 (QI)	
318	Lago Falkner	406.43	4160.04 (QI)	
314				
319	L. Melaquina	518.93	Calibración indirecta	
115				4100.03 Pto. Córdoba
320	Caleufú Inferior	1096.31	Calibración indirecta	
116				
117				4000.07 D. Collón Curá
321	Lago Traful	918.6	2200.02 (QI)	
322	Río Minero	1364.78	Q032 (QO)	
118				2200.03 La Cantera
323	L.Nahuel Huapí	3908.80	2000.10 (QI)	
324	Limay en R.del Creide	836.45	Q642 (QO)	
119				2000.64 R.del Creide
120	Ingreso Alicurá			
325	Pichi Leufú	2115.38	Calibración indirecta	
121	Paso Flores			2000.07
122	Ingreso Piedra del Aguila (Paso Limay)			2000.06

Tabla 4.2.2.3.1. (cont.) Cuencas, calibración o ingreso directo y puntos de control

(*) Se refiere a caudales calculados por sumas o restas de estaciones de aforo.

Cuenca		Fluj	o base		Pérdidas			H.U.			
302	BF	20	60	1.002	LU	25	1.3	UC	6	30	
303	BF	1	20	1.005	LU	15	1.8	UC	3	25	
304	BF	60	130	1.0001	LU	25	0.8	UC	3	10	
306	BF	25	88	1.0025	LU	100	1.6	UC	10	30	
307	BF	25	100	1.0001	LU	40	0.98	UC	10	26	
309	BF	14	20	1.001	LU	30	1.8	UD	6.0		
310	BF	20	35	1.001	LU	20	1.4	UD	6.0		
311	BF	19	30	1.001	LU	20	1.4	UD	6.0		
312	BF	20	30	1.0002	LU	16	1.3	UC	6	2	
315	BF	35	100	1.006	LE	2.83	450	UD	12		
							4.81				
							0.51				
316	BF	60	800	1.004	LU	20	1.20	UC	6	4	
319	BF	25	70	1.00001	LU	20	1.3	UC	40	60	
320	BF	1.5	45	1.006	LU	50	3.2	UD	30		
322	BF	5	10	1.001	LU	15	3.0	UC	2	3	
324	BF	1.0	10	1.0	LU	50	1.2	UC	35	45	
325	BF	0.01	5	1.05	LU	40	2.25	UD	20		

Tabla 4.2.2.3.2 Parámetros optimizados de cuencas intermedias y bajas con la creciente de junio-julio 1993

BF STRTQ = Caudal (m³/s) al inicio del hidrograma de la creciente

QRCSN = Caudal (m³/s) al inicio de la curva de recesión

RTIOR = Tasa de recesión del caudal base

LU STRTL = Pérdida inicial (mm)

CNSTL = Tasa de pérdida constante

LE STRKR = Valor inicial (mm/hora) de la función exponencial de tasa de pérdida

- DLTKR = El valor en (mm) de la pérdida acumulada durante la cual el coeficiente de pérdida aumenta
- RTIOL = Tasa de cambio del parámetro de pérdida de lluvia computado como la Relación de STRKR y STRKR + 10 mm
- ERAIN = Exponente de la función de tasa de pérdida de la precipitación
- UC Tc = Tiempo de concentración en horas para el Hidrograma Unitario de Clark
- R = Coeficiente de almacenamiento de Clark

UD Tp = Tiempo de retraso ("lag time") del Soil Conservation Service

Los resultados de la calibración se pueden apreciar gráficamente en los hidrogramas de la Figura 4.2.2.3.1.

Figura 4.2.2.3.1. Hidrogramas de puntos de control para la calibración (junio-julio 93)

4.2.2.4. Validación del modelo

Con los parámetros ya calibrados con el evento de junio de 1993 se aplicó el modelo a los eventos de junio de 1945, mayo de 1985, mayo de 2001 y junio de 2001 a los efectos de validar tal calibración. Estos resultados se pueden apreciar gráficamente en la comparación de hidrogramas de la Figura 4.2.2.4.1.

4.2.2.5. Análisis de los resultados

En la Tabla 4.2.2.5.1 se puede apreciar numéricamente el resultado de la calibración con el evento de junio de 1993.

Estación de control	Volumen (hm ³)			Caudal (m³/s)			Tp (Horas)		
	С	0	%D	С	0	%D	С	0	%D
6000.07 Babuó	546	568	-3.94	814	818	-0.55	192	192	0
6200.03 Ea. Sta. Rosa	253	257	-1.31	251	259	-3.06	198	192	6
6000.26 Talhelum	965	999	-3.45	1455	1456	-0.08	195	192	3
6000.27 Ea. Huechahue	1354	1391	-2.68	2405	2464	-2.40	192	192	0
7000.09 Pto. Confluencia	581	586	-0.84	550	550	0	195	192	3
4000.07 Desembocadura del Collón Curá	2779	2499	+11.0	3961	3795	+4.38	192	192	0
4100.03 Pto. Córdoba	307	316	-2.74	366	357	+2.54	213	192	21
2000.03 La Cantera	208	208	0	273	288	-5.41	168	168	0
2000.64 Rincón del Creide	622	654	-4.95	461	467	-1.38	192	192	0
2000.07 Paso Flores	830	881	-5.77	652	695	-5.97	186	168	18
2000.06 Paso Limay	3609	3360	+7.41	4610	4468	+3.18	192	192	0

Tabla 4.2.2.5.1 Calibración del modelo HEC-1

C = Calculado - O = Observado - %D = Diferencia en %

En las tablas 4.2.2.5.2 a 4.2.2.5.5 figuran en forma de resumen los valores de volumen, caudal pico y tiempo al pico en los casos en que se realizó la validación del modelo HEC-1.

	Volumen Hm ³	Caudal pico m ³ /s	Tp horas
Obs.	5714	4785	96
Calculado	5305	5037	120
Dif. %	- 7.16	+ 5.26	- 24 horas

Pp media Obs. 217.80 mm - Calc. 202.21 mm

	Volumen Hm ³	Caudal pico m ³ /s	Tp horas
Obs.	2455	3104	168
Calculado	2448	3642	72
Dif. %	- 0.26	+ 17	- 96

Tabla 4.2.2.5.3 Validación del Modelo. Mayo de 1985. Paso Limay

Pp media Obs. 97.98 mm – Calc. 97.72 mm

Tabla 4.2.2.5.4 Validación del Modelo- Mayo del 2001
--

Punt	to de Control	,	Volumen (Hm ³) Caudal Pico Tiempo del Pico				Caudal Pico (m³/s)			Lag CM a CM
ID	Nombre	0	C	%D	0	C	%D	Hora	Dif. Horas	Dif %
6000.27	Ea. Huechahue	1438	2062	+43	1741	1821	+4.57	96	0	2.47
7000.09	Pto. Confluencia	663	707	+6.67	351	394	+12.25	168	48	0.53
4100.03	Pto. Córdoba	321	373	+18	231	317	+37	96	0	9
4000.07	D. del C. Curá	2883	2820	-2.17	2632	2168	-18	96	0	1.33
2200.03	La Cantera	256	150	-41	218	128	-42	96	24	8.8
2000.64	R. del Creide	514	493	-3.93	232	220	-5.18	96	0	0.69

Tabla 4.2.2.5.5 Validación del Modelo. Junio del 2001

Punt	o de control	,	Volumen (Hm ³) Caudal Pico (m ³ /s) Pico			Caudal Pico (m³/s)			po del ico	Lag CM a Cm
Ð	Nombre	0	С	%D	0	С	%D	Hora	Dif. Horas	Dif %
6000.27	Ea. Huechahue	1311	1430	+9.14	2225	3215	+44	99	21	4.83
7000.09	Pto.Confluencia	489	500	+2.27	550	526	-4.37	192	0	5.32
4100.03	Pto. Córdoba	230	262	+14	283	379	+34	144	0	5.46
4000.07	D .del C.Curá	2416	1971	-18	3600	3669	+1.96	99	21	3.21
2200.03	La Cantera	188	112	-40	249	156	-37	144	24	1.21
2000.64	R. del Creide	405	327	-19	388	309	-20	240	24	1.37

C = Calculado - O = Observado - %D = Diferencia en %

4.2.2.6. Validación con el modelo IHMS

La AIC opera la simulación de las cuencas a que se refiere este informe mediante una implementación del modelo continuo IHMS (Integrated Hydrological Model System) del Instituto Sueco de Meteorología e Hidrología (SMI, 1994).

Con el objeto de analizar la concordancia de resultados se realizó una comparación de hidrogramas resultantes de la simulación de la tormenta de calibración (junio-julio 1993) en el modelo IHMS y de la calibración con HEC-1.

Se incluyen los gráficos correspondientes a los hidrogramas observados y simulados en la desembocadura del Collón Curá (4000.07) (Figura 4.2.2.6.1) y Paso Flores (2000.07) (Figura 4.2.2.6.2).

Figura 4.2.2.6.1. Desembocadura del Collón Curá (4000.07)

Figura 4.2.2.6.2. Paso Flores (2000.07)

Se puede observar una razonable concordancia, especialmente si se tienen en cuenta las diferencias que presenta la calibración de un modelo de eventos como el HEC-1 y un modelo continuo sobre un período más prolongado. Para ilustrar esta situación se incluye a continuación la comparación entre hidrogramas observados y simulados con IHMS para el período completo de datos disponibles en los mismos puntos (Figuras 4.2.2.6.3 y 4.2.2.6.4).

Figura 4.2.2.6.3. Desembocadura del Collón Curá (4000.07)

Figura 4.2.2.6.4. Paso Flores (2000.07)

4.3. Selección de las condiciones generadoras de la CMP

Sobre la base de la bibliografía consultada, a la información que se puede obtener de los eventos históricos y a la posibilidad de entrada de datos del modelo HEC-1 se pudieron identificar las siguientes hipótesis de condiciones generadoras de la CMP:

Hipótesis I

- Se utiliza una precipitación antecedente de las tormentas máximas históricas analizadas para maximizar (caso de crecidas de 1944 y 1945)
- Se aplica el CN y la abstracción inicial (l_a) correspondientes al evento calibrado (jun. 1993)
- En consecuencia cuando comienza el escurrimiento proveniente de la PMP, la precipitación efectiva es solamente afectada por el CN y no por la abstracción inicial (l_a).

Hipótesis II

- Se determina el coeficiente de escurrimiento de la situación antecedente (Cantec).
- Se aplica la relación Cantec/C1993 (C1993=0,27) a todas las subcuencas de manera tal de lograr que los pares de valores [CN, la] reproduzcan tal coeficiente de escurrimiento.
- Se utiliza el Q inicial que produzca el efecto más desfavorable.

Evento	Cantec	Cantec/C1993	Q inicial
26-30/6/1944	0.35	1.30	885
26-30/5/1945	0.41	1.52	1075

Luego de algunas pruebas se pudo inferir que la Hipótesis I era la más apropiada para los fines de este estudio.

A tal efecto se seleccionó como pretormenta la observada en el período 27-30 de mayo de 1945.

También con la validación de HEC-1 con el Modelo IHMS (4.2.2.6.) se pudo determinar que la cuenca del río Limay se encontraba en condición de suelo saturado cuando ocurrió el evento de 1993, y por lo tanto los parámetros del modelo HEC-1, incluido el CN, obtenidos por calibración reflejan tal condición.

4.3.1. Incidencia de la fusión nival

Para la determinación de las áreas cubiertas de nieve, se utilizaron imágenes NOAA suministradas por la AIC, de las siguientes fechas: junio '95, 18 de agosto '95, 22 de junio '96, 27 de agosto '96 y 4 de mayo '97.

En consideración de que el área cubierta de nieve no sigue el patrón de una determinada curva de nivel, resulta dificultosa la medición sin la ayuda de un sistema de información geográfica adecuado (SIG).

Se optó por el uso del SIG IDRISI en consideración de la adecuada capacidad para el manejo y cálculo de las imágenes satelitales NOAA, así como por su relativa facilidad de manejo.

En el análisis y procesamiento de las imágenes NOAA, para la diferenciación de los campos de nieve con las nubes y el suelo sin cobertura nival; se comenzó con la utilización del método del "algoritmo Theta" (Tripodi, 1999).

Este método Theta clasifica distintas superficies de interés analizando el ángulo que forma un vector "F" (de tres o cuatro dimensiones) obtenido a partir del análisis de distintos canales del sensor AVHRR o bandas del satélite NOAA, con un vector unitario "G", obteniéndose dos imágenes, corriendo por cuenta del analista determinar los límites de ambas superficies.

Este procedimiento no permitió obtener resultados satisfactorios, quedando dudas en la elección del vector unitario "G".

Teniendo en cuenta las cinco bandas del sensor AVHRR (rojo, infrarrojo cercano, infrarrojo medio, y dos en el infrarrojo térmico), y considerando la mayor reflectividad de la nieve en el rango visible del espectro; se identificaron los campos de nieve, con la ayuda del SIG, según el procedimiento descrito a continuación:

- 1) Selección de la imagen NOAA, en la fecha de análisis.
- Realización de un OVERLAY sumando las bandas del infrarrojo térmico 4 y 5 (banda 4 + banda 5), obteniéndose una nueva imagen equivalente a la banda 6 de LANDSAT.
- 3) Aplicación de STRETCH a la nueva imagen obtenida, con el objeto de reescalar los valores de la imagen en 16 categorías, quedando los datos expresados en bytes y los archivos en binario.
- 4) Ejecución de ISOCLUST, utilizando como imagen base (seeding) la nueva imagen reclasificada en 16 categorías y utilizando las 5 bandas de la imagen NOAA original. En este proceso se realizó 10 iteraciones para obtener como producto final una nueva imagen reclasificada, donde se observó una adecuada diferenciación entre la nieve, las nubes y los demás elementos de superficie.
- 5) Esta nueva imagen compuesta, se exportó a un CAD, utilizándola como una capa base de tipo raster, a la cual se superpuso, una capa vectorial con las divisorias de cuencas.

En el mapa compuesto obtenido, se pudo diferenciar los campos de nieve para cada una de las cuencas en estudio, se calculó el área cubierta de nieve y el porcentual correspondiente (Figura 4.3.1.1).

Figura 4.3.1.1 Area de cobertura nival

4.3.2. Análisis de separación entre pretormenta y PMP

Se consideraron dos formas de separar la pretormenta y la PMP:

- 1) Una aplicación basada en la separación considerada de nueve días para las tormentas del 26/30 de junio y 10/13 de julio de 1944.
- 2) Una aplicación que considera un día de separación, basada en análisis estadístico de los datos pluviométricos diarios de las 76 estaciones disponibles para el período 1/4/1980 al 21/8/2001. Se incluyeron solamente las tormentas correspondientes al período lluvioso.

Esta última consideración fue la adoptada ya que producía mayores caudales en todas las situaciones estudiadas y porque, además, el estudio estadístico la presenta como la más frecuente.

Análisis estadístico de días sin precipitación entre tormentas

Con el objeto de identificar la longitud de los períodos no lluviosos se definió un criterio numérico. El criterio utilizado considera que se inicia una tormenta cuando se observa una precipitación superior a 20 mm en más del 10% de las estaciones en la cuenca. Se considera que una tormenta finaliza cuando se observa una precipitación superior a 20 mm en menos del 8% de las estaciones.

La curva de frecuencias obtenida del número de días consecutivos sin lluvia, considerando solo los meses de invierno del período 1980/1998 y del año 2001, se presenta en la Tabla 4.3.2.1 y muestra que la longitud de período no lluvioso más frecuente es de un día.

Clase	Frecuencia	Frecuencia relativa %
1	41	19.34
2	30	14.15
3	24	11.32
4	20	9.43
5	12	5.66
6	13	6.13
7	11	5.19
8	10	4.72
9	8	3.77
10	5	2.36
11	4	1.89
12	3	1.42
13	4	1.89
14	6	2.83
15	2	0.94
> 15	19	8.96

Tabla 4.3.2.1 Frecuencia de días sin lluvias

4.3.3. Condiciones Generadoras de la CMP

En base a las consideraciones mencionadas se determinó el siguiente escenario:

- Las subcuencas lacustres 317 (Lago Hermoso) y 321 (Lago Traful) se encuentran con una cobertura nival del 70% de su superficie y la precipitación pluvial produce escurrimiento por fusión. El paquete de nieve tiene un espesor tal que no se agota durante el evento y la serie de temperaturas utilizada fue la correspondiente a la Estación Bariloche Aero en el período 27/05 14/06/1945. En el resto de las subcuencas lacustres la fusión producida por la lluvia está simulada por la función respuesta estimada.
- Se utilizó como pretormenta el evento observado durante el 27-30/05/1945.
- El período no lluvioso de separación entre la pretormenta y el inicio de la PMP (eventos maximizados seleccionados) fue de un día.
- El modelo de simulación lluvia-escorrentía se encuentra con los parámetros correspondientes a humedad del suelo, según la calibración con el evento de 1993 (condición de saturación), en las subcuencas intermedias y bajas. Los hidrogramas de salida de las subcuencas lacustres se incorporaron al modelo como datos de entrada.

4.4. Aplicación del modelo con las PMP

Las simulaciones se realizaron para cada una de las PMP utilizando las condiciones definidas en 4.3.3.

Los resultados de las simulaciones realizadas según la metodología planteada se presentan en la Tabla 4.4.1. El caudal pico correspondiente al evento de mayo de 1985 maximizado es el mayor de las situaciones consideradas, tanto para la presa Piedra del Aguila como para la presa Alicurá. De igual manera se pueden considerar a los volúmenes. En consecuencia este evento fue seleccionado como la Crecida Máxima Probable (CMP) para ambas presas. En las tablas 4.4.2 a 4.4.5 y figuras 4.4.1 a 4.4.4 se presentan los hidrogramas obtenidos en los siguientes puntos relevantes:

- Emplazamiento de Alicurá
- Cuenca intermedia entre Alicurá y Paso Limay
- Aporte del Río Collón Curá a Piedra del Águila
- Cuenca intermedia entre Paso Limay y Piedra del Águila
- Emplazamiento de Piedra del Águila

РМР		CMP en Piedra del Aguila		CMP en Alicurá	
Fecha	Coef. Maxim.	Qp (m³/s)	Vol (hm³)	Qp (m³/s)	Vol (hm³)
26-30/6/44	2.24	11919	14460	1330	3767
10-13/7/44	1.40	7598	12500	939	3434
27-30/5/45	1.82	14097	14477	744	3276
09-14/6/45	1.47	6935	11466	745	3163
21-23/5/81	1.87	5994	11352	721	3184
23-27/5/85	2.51	18142	19654	2326	5375
23-28/6/93	1.72	11028	14204	1930	3784
24-28/5/01	1.87	8247	14269	1255	3839
03-08/6/01	1.79	9932	14717	1053	3907

Tabla 4.4.1. Simulaciones para las PMP consideradas

Tabla 4.4.2 Hidrograma de la CMP en el sitio de emplazamiento de Alicurá (punto 120 del diagrama de flujo)

DIA	MES	HORA	CAUDAL
23	MAY	0	430
23	MAY	600	429
23	MAY	1200	428
23	MAY	1800	427
24	MAY	0	425
24	MAY	600	429
24	MAY	1200	433
24	MAY	1800	436
25	MAY	0	440
25	MAY	600	451
25	MAY	1200	462

DIA	MES	HORA	CAUDAL
25	MAY	1800	473
26	MAY	0	484
26	MAY	600	497
26	MAY	1200	509
26	MAY	1800	521
27	MAY	0	534
27	MAY	600	534
27	MAY	1200	534
27	MAY	1800	534
28	MAY	0	534
28	MAY	600	561

DIA	MES	HORA	CAUDAL
28	MAY	1200	588
28	MAY	1800	615
29	MAY	0	642
29	MAY	600	1356
29	MAY	1200	2091
29	MAY	1800	2194
30	MAY	0	2326
30	MAY	600	1808
30	MAY	1200	1291
30	MAY	1800	1404
31	MAY	0	1488
31	MAY	600	1518
31	MAY	1200	1532
31	MAY	1800	1538
1	JUN	0	1540
1	JUN	600	1526
1	JUN	1200	1504
1	JUN	1800	1475
2	JUN	0	1440
2	JUN	600	1399
2	JUN	1200	1360
2	JUN	1800	1329
3	JUN	0	1306
3	JUN	600	1288
3	JUN	1200	1270
3	JUN	1800	1249
4	JUN	0	1223
4	JUN	600	1196
4	JUN	1200	1167
4	JUN	1800	1141
5	JUN	0	1118
5	JUN	600	1094
5	JUN	1200	1071
5	JUN	1800	1051
6	JUN	0	1032
6	JUN	600	1016
6	JUN	1200	1001
6	JUN	1800	987
7	JUN	0	974
7	JUN	600	961
7	JUN	1200	950
7	JUN	1800	939
. 8	JUN	0	928
8	JUN	600	918
8	JUN	1200	909
8	JUN	1800	900
9	JUN	0	890
8 8 9	JUN JUN	1200 1800 0	909 900 890

DIA	MES	HORA	CAUDAL
9	JUN	600	881
9	JUN	1200	872
9	JUN	1800	864
10	JUN	0	857
10	JUN	600	851
10	JUN	1200	845
10	JUN	1800	838
11	JUN	0	832
11	JUN	600	825
11	JUN	1200	819
11	JUN	1800	812
12	JUN	0	806
12	JUN	600	799
12	JUN	1200	793
12	JUN	1800	787
13	JUN	0	780
13	JUN	600	780
13	JUN	1200	780
13	JUN	1800	780
14	JUN	0	780
14	JUN	600	780
14	JUN	1200	780
14	JUN	1800	780
15	JUN	0	780
15		600	780
15	JUN	1200	780
15		1800	780
16	JUN	0	780
16		600	780
16	JUN	1200	780
16		1200	780
17		0	780
17		600	780
17		1200	780
17		1800	780
12		0000	780
10		600	780
10		1200	780
10		1200	700
10		000	700
19		600	770
19		1200	770
19		1200	770
19	JUN	1000	770
20	JUN	0	770
20	JUN	000	770
20	JUN	1200	//9
20	JUN	1800	//9

21 JUN 0 779 21 JUN 600 779 21 JUN 1200 779 21 JUN 1800 779 21 JUN 1800 779 22 JUN 0 779 22 JUN 600 779 22 JUN 1200 779 22 JUN 1800 779 23 JUN 0 779 23 JUN 600 779 23 JUN 1200 779 23 JUN 1200 779 24 JUN 0 779 24 JUN 1200 779 24 JUN 1800 779 25 JUN 1800 779 25 JUN 1200 779 25 JUN 1200 779 25 JUN 1800 779
21 JUN 600 779 21 JUN 1200 779 21 JUN 1800 779 22 JUN 0 779 22 JUN 600 779 22 JUN 600 779 22 JUN 1200 779 23 JUN 1800 779 23 JUN 600 779 23 JUN 600 779 23 JUN 1200 779 23 JUN 1200 779 24 JUN 0 779 24 JUN 1200 779 24 JUN 1800 779 25 JUN 100 779 25 JUN 1200 779 25 JUN 1200 779 25 JUN 1800 779 25 JUN 0 778
21 JUN 1200 779 21 JUN 1800 779 22 JUN 0 779 22 JUN 600 779 22 JUN 1200 779 22 JUN 1200 779 22 JUN 1200 779 23 JUN 0 779 23 JUN 600 779 23 JUN 1200 779 23 JUN 1800 779 24 JUN 0 779 24 JUN 600 779 24 JUN 1200 779 24 JUN 1800 779 25 JUN 0 779 25 JUN 1200 779 25 JUN 1200 779 25 JUN 1800 779 26 JUN 0 778
21 JUN 1800 779 22 JUN 0 779 22 JUN 600 779 22 JUN 1200 779 22 JUN 1200 779 22 JUN 1800 779 23 JUN 0 779 23 JUN 600 779 23 JUN 1200 779 23 JUN 1800 779 24 JUN 0 779 24 JUN 600 779 24 JUN 1200 779 24 JUN 1800 779 25 JUN 1200 779 25 JUN 1200 779 25 JUN 1200 779 25 JUN 1200 778 26 JUN 0 778 26 JUN 1200 778
22 JUN 0 779 22 JUN 600 779 22 JUN 1200 779 22 JUN 1800 779 23 JUN 0 779 23 JUN 600 779 23 JUN 600 779 23 JUN 1200 779 23 JUN 1800 779 24 JUN 600 779 24 JUN 1200 779 24 JUN 1200 779 25 JUN 1200 779 25 JUN 0 779 25 JUN 1200 779 25 JUN 1200 779 25 JUN 1200 779 25 JUN 1800 779 26 JUN 0 778 26 JUN 600 778
22 JUN 600 779 22 JUN 1200 779 22 JUN 1800 779 23 JUN 0 779 23 JUN 600 779 23 JUN 600 779 23 JUN 1200 779 23 JUN 1800 779 23 JUN 1800 779 24 JUN 600 779 24 JUN 1200 779 24 JUN 1200 779 25 JUN 0 779 25 JUN 1200 779 25 JUN 1200 779 25 JUN 1800 779 25 JUN 1800 779 26 JUN 0 778 26 JUN 600 778 26 JUN 1200 778
22 JUN 1200 779 22 JUN 1800 779 23 JUN 0 779 23 JUN 600 779 23 JUN 1200 779 23 JUN 1800 779 23 JUN 1800 779 24 JUN 0 779 24 JUN 600 779 24 JUN 1200 779 24 JUN 1800 779 25 JUN 0 779 25 JUN 1800 779 25 JUN 1200 779 25 JUN 1200 779 25 JUN 1800 779 25 JUN 1800 779 26 JUN 0 778 26 JUN 600 778 26 JUN 1200 778
22 JUN 1800 779 23 JUN 0 779 23 JUN 600 779 23 JUN 1200 779 23 JUN 1200 779 23 JUN 1800 779 23 JUN 1800 779 24 JUN 600 779 24 JUN 1200 779 24 JUN 1800 779 25 JUN 0 779 25 JUN 1200 779 25 JUN 1200 779 25 JUN 1200 779 25 JUN 1800 779 25 JUN 1800 779 26 JUN 0 778 26 JUN 600 778 26 JUN 1200 778
23 JUN 0 779 23 JUN 600 779 23 JUN 1200 779 23 JUN 1800 779 23 JUN 1800 779 24 JUN 0 779 24 JUN 600 779 24 JUN 1200 779 24 JUN 1800 779 25 JUN 0 779 25 JUN 600 779 25 JUN 1200 779 25 JUN 1200 779 25 JUN 1800 779 25 JUN 1800 779 26 JUN 0 778 26 JUN 600 778 26 JUN 1200 778 26 JUN 1200 778
23 JUN 600 779 23 JUN 1200 779 23 JUN 1800 779 24 JUN 0 779 24 JUN 600 779 24 JUN 600 779 24 JUN 1200 779 24 JUN 1800 779 25 JUN 0 779 25 JUN 600 779 25 JUN 1200 779 25 JUN 1200 779 25 JUN 1200 779 25 JUN 1800 779 26 JUN 0 778 26 JUN 600 778 26 JUN 1200 778 26 JUN 1200 778
23 JUN 1200 779 23 JUN 1800 779 24 JUN 0 779 24 JUN 600 779 24 JUN 1200 779 24 JUN 1200 779 24 JUN 1800 779 25 JUN 0 779 25 JUN 600 779 25 JUN 1200 779 25 JUN 1200 779 25 JUN 1200 779 26 JUN 0 778 26 JUN 600 778 26 JUN 1200 778 26 JUN 1200 778
23 JUN 1800 779 24 JUN 0 779 24 JUN 600 779 24 JUN 1200 779 24 JUN 1200 779 24 JUN 1800 779 25 JUN 0 779 25 JUN 600 779 25 JUN 1200 779 25 JUN 1800 779 25 JUN 1800 779 25 JUN 1800 779 26 JUN 0 778 26 JUN 600 778 26 JUN 1200 778 26 JUN 1200 778
24 JUN 0 779 24 JUN 600 779 24 JUN 1200 779 24 JUN 1800 779 25 JUN 0 779 25 JUN 600 779 25 JUN 1200 779 25 JUN 1200 779 25 JUN 1800 779 26 JUN 0 778 26 JUN 600 778 26 JUN 600 778 26 JUN 1200 778
24 JUN 600 779 24 JUN 1200 779 24 JUN 1800 779 25 JUN 0 779 25 JUN 600 779 25 JUN 1200 779 25 JUN 1200 779 25 JUN 1800 779 26 JUN 0 778 26 JUN 600 778 26 JUN 1200 778 26 JUN 1200 778
24 JUN 1200 779 24 JUN 1800 779 25 JUN 0 779 25 JUN 600 779 25 JUN 1200 779 25 JUN 1200 779 25 JUN 1800 779 26 JUN 0 778 26 JUN 600 778 26 JUN 1200 778 26 JUN 1200 778
24 JUN 1800 779 25 JUN 0 779 25 JUN 600 779 25 JUN 1200 779 25 JUN 1800 779 25 JUN 1800 779 26 JUN 0 778 26 JUN 600 778 26 JUN 1200 778 26 JUN 1200 778
25 JUN 0 779 25 JUN 600 779 25 JUN 1200 779 25 JUN 1800 779 26 JUN 0 778 26 JUN 600 778 26 JUN 1200 778
25 JUN 600 779 25 JUN 1200 779 25 JUN 1800 779 26 JUN 0 778 26 JUN 600 778 26 JUN 1200 778 26 JUN 1200 778
25 JUN 1200 779 25 JUN 1800 779 26 JUN 0 778 26 JUN 600 778 26 JUN 1200 778
25 JUN 1800 779 26 JUN 0 778 26 JUN 600 778 26 JUN 1200 778
26 JUN 0 778 26 JUN 600 778 26 JUN 1200 778
26 JUN 600 778 26 JUN 1200 778
26 JUN 1200 778
26 JUN 1800 778
27 JUN 0 778
27 JUN 600 778
27 JUN 1200 778
27 JUN 1800 778
28 JUN 0 778
28 JUN 600 778
28 JUN 1200 778
28 JUN 1800 778
29 JUN 0 778
29 JUN 600 778
29 JUN 1200 778
29 JUN 1800 778
30 JUN 0 778
30 JUN 0 778 30 JUN 600 778
30 JUN 0 778 30 JUN 600 778 30 JUN 1200 778
30 JUN 0 778 30 JUN 600 778 30 JUN 1200 778 30 JUN 1200 778 30 JUN 1800 778
30 JUN 0 778 30 JUN 600 778 30 JUN 1200 778 30 JUN 1800 778 30 JUN 1800 778 1 JUL 0 778
30 JUN 0 778 30 JUN 600 778 30 JUN 1200 778 30 JUN 1200 778 30 JUN 1800 778 1 JUL 0 778 1 JUL 600 778
30 JUN 0 778 30 JUN 600 778 30 JUN 1200 778 30 JUN 1200 778 30 JUN 1800 778 1 JUL 0 778 1 JUL 600 778 1 JUL 600 778 1 JUL 1200 778
30 JUN 0 778 30 JUN 600 778 30 JUN 1200 778 30 JUN 1200 778 30 JUN 1800 778 1 JUL 0 778 1 JUL 600 778 1 JUL 600 778 1 JUL 1200 778 1 JUL 1200 778 1 JUL 1800 778
30 JUN 0 778 30 JUN 600 778 30 JUN 1200 778 30 JUN 1200 778 30 JUN 1800 778 1 JUL 0 778 1 JUL 600 778 1 JUL 600 778 1 JUL 1200 778 1 JUL 1200 778 1 JUL 1200 778 2 JUL 0 778
30 JUN 0 778 30 JUN 600 778 30 JUN 1200 778 30 JUN 1200 778 30 JUN 1800 778 1 JUL 0 778 1 JUL 600 778 1 JUL 1200 778 1 JUL 1200 778 2 JUL 1800 778 2 JUL 0 778 2 JUL 0 778 2 JUL 600 778

DIA	MES	HORA	CAUDAL
2	JUL	1800	778
3	JUL	0	778
3	JUL	600	778
3	JUL	1200	778
3	JUL	1800	778
4	JUL	0	778
4	JUL	600	778
4	JUL	1200	778
4	JUL	1800	777
5	JUL	0	777
5	JUL	600	777
5	JUL	1200	777
5	JUL	1800	777
6	JUL	0	777
6	JUL	600	777
6	JUL	1200	777
6	JUI	1800	777
7		0	777
7		600	777
7		1200	777
7	111	1200	777
0		0	777
0	JOL	600	777
0	JOL	1200	777
0	JUL	1200	777
0	JUL	1800	777
9	JUL	0	777
9	JUL	600	777
9	JUL	1200	///
9	JUL	1800	///
10	JUL	0	///
10	JUL	600	777
10	JUL	1200	777
10	JUL	1800	777
11	JUL	0	777
11	JUL	600	777
11	JUL	1200	777
11	JUL	1800	777
12	JUL	0	777
12	JUL	600	777
12	JUL	1200	777
12	JUL	1800	777
13	JUL	0	777
13	JUL	600	777
13	JUL	1200	777
13	JUL	1800	777
14	JUL	0	777
14	JUL	600	777

DIA	MES	HORA	CAUDAL
14	JUL	1200	777
14	JUL	1800	777
15	JUL	0	777
15	JUL	600	777
15	JUL	1200	777
15	JUL	1800	776
16	JUL	0	776
16	JUL	600	776
16	JUL	1200	776
16	JUL	1800	776
17	JUL	0	776
17	JUL	600	776
17	JUL	1200	776
17	JUL	1800	776
18	JUL	0	776
18	JUL	600	776

DIA	MES	HORA	CAUDAL
18	JUL	1200	776
18	JUL	1800	776
19	JUL	0	776
19	JUL	600	776
19	JUL	1200	776
19	JUL	1800	776
20	JUL	0	776
20	JUL	600	776
20	JUL	1200	776
20	JUL	1800	776
21	JUL	0	776
21	JUL	600	776
21	JUL	1200	776
21	JUL	1800	776

DIA	MES	HORA	CAUDAL
23	MAY	0	0
23	MAY	600	0
23	MAY	1200	0
23	MAY	1800	0
24	MAY	0	0
24	MAY	600	0
24	MAY	1200	0
24	MAY	1800	0
25	MAY	0	0
25	MAY	600	0
25	MAY	1200	0
25	MAY	1800	0
26	MAY	0	0
26	MAY	600	0
26	MAY	1200	0
26	MAY	1800	0
27	MAY	0	0
27	MAY	600	0
27	MAY	1200	0
27	MAY	1800	0
28	MAY	0	0
28	MAY	600	0
28	MAY	1200	0
28	MAY	1800	0
29	MAY	0	0
29	MAY	600	47

DIA	MES	HORA	CAUDAL
29	MAY	1200	204
29	MAY	1800	484
30	MAY	0	789
30	MAY	600	1004
30	MAY	1200	1032
30	MAY	1800	868
31	MAY	0	638
31	MAY	600	425
31	MAY	1200	273
31	MAY	1800	180
1	JUN	0	117
1	JUN	600	77
1	JUN	1200	50
1	JUN	1800	33
2	JUN	0	22
2	JUN	600	14
2	JUN	1200	9
2	JUN	1800	6
3	JUN	0	4
3	JUN	600	3
3	JUN	1200	2
3	JUN	1800	2
4	JUN	0	1
4	JUN	600	1
4	JUN	1200	1
4	JUN	1800	1

Tabla 4.4.3 Hidrograma de la CMP de la cuenca intermedia entre Alicu	⁺á y Paso Limay
(cuenca 325 Pichi Leufú)	

Figura 4.4.2 CMP de la cuenca intermedia entre Alicurá y Paso Limay
DIA	MES	HORA	CAUDAL
23	MAY	0	769
23	MAY	600	771
23	MAY	1200	774
23	MAY	1800	776
24	MAY	0	779
24	MAY	600	809
24	MAY	1200	844
24	MAY	1800	877
25	MAY	0	913
25	MAY	600	1268
25	MAY	1200	1969
25	MAY	1800	2569
26	MAY	0	2933
26	MAY	600	3645
26	MAY	1200	4515
26	MAY	1800	5007
27	MAY	0	5244
27	MAY	600	4801
27	MAY	1200	3983
27	MAY	1800	3467
28	MAY	0	3248
28	MAY	600	3093
28	MAY	1200	2959
28	MAY	1800	2883
29	MAY	0	2870
29	MAY	600	5529
29	MAY	1200	10494
29	MAY	1800	13355
30	MAY	0	15027
30	MAY	600	14590
30	MAY	1200	13414
30	MAY	1800	13101
31	MAY	0	13018
31	MAY	600	11874
31	MAY	1200	10347
31	MAY	1800	9486
1	JUN	0	9037
1	JUN	600	8724
1	JUN	1200	8580
1	JUN	1800	8536
2	JUN	0	8475
2	JUN	600	8025

DIA	MES	HORA	CAUDAL
2	JUN	1200	7204
2	JUN	1800	6531
3	JUN	0	6127
3	JUN	600	5678
3	JUN	1200	5070
3	JUN	1800	4544
4	JUN	0	4217
4	JUN	600	4003
4	JUN	1200	3844
4	JUN	1800	3705
5	JUN	0	3575
5	JUN	600	3470
5	JUN	1200	3381
5	JUN	1800	3301
6	JUN	0	3217
6	JUN	600	3138
6	JUN	1200	3060
6	JUN	1800	2983
7	JUN	0	2908
7	JUN	600	2836
7	JUN	1200	2767
7	JUN	1800	2698
8	JUN	0	2630
8	JUN	600	2571
8	JUN	1200	2514
8	JUN	1800	2456
9	JUN	0	2399
9	JUN	600	2347
9	JUN	1200	2295
9	JUN	1800	2244
10	JUN	0	2193
10	JUN	600	2147
10	JUN	1200	2102
10	JUN	1800	2056
11	JUN	0	2011
11	JUN	600	1971
11	JUN	1200	1931
11	JUN	1800	1891
12	JUN	0	1852
12	JUN	600	1817
12	JUN	1200	1782
12	JUN	1800	1747

 Tabla 4.4.4 Hidrograma de la CMP de ingreso a Piedra del Águila desde el río Collón Curá

 punto 117 del diagrama de flujo)

DIA	MES	HORA	CAUDAL
13	JUN	0	1713
13	JUN	600	1687
13	JUN	1200	1665
13	JUN	1800	1642
14	JUN	0	1619
14	JUN	600	1605
14	JUN	1200	1590
14	JUN	1800	1575
15	JUN	0	1561
15	JUN	600	1554
15	JUN	1200	1547
15	JUN	1800	1540
16	JUN	0	1533
16	JUN	600	1527
16	JUN	1200	1521
16	JUN	1800	1514
17	JUN	0	1508
17	JUN	600	1502
17	JUN	1200	1497
17	JUN	1800	1491
18	JUN	0	1485
18	JUN	600	1480
18	JUN	1200	1475
18	JUN	1800	1469
19	JUN	0	1464
19	JUN	600	1459
19	JUN	1200	1454
19	JUN	1800	1450
20	JUN	0	1445
20	JUN	600	1440
20	JUN	1200	1436
20	JUN	1800	1432
21	JUN	0	1427
21	JUN	600	1423
21	JUN	1200	1419
21	JUN	1800	1415
22	JUN	0	1411
22	JUN	600	1407
22	JUN	1200	1403
22	JUN	1800	1400
23	JUN	0	1396
23	JUN	600	1392
23	JUN	1200	1389
23	JUN	1800	1385
24	JUN	0	1382
24	JUN	600	1379
24	JUN	1200	1376

DIA	MES	HORA	CAUDAL
24	JUN	1800	1372
25	JUN	0	1369
25	JUN	600	1366
25	JUN	1200	1363
25	JUN	1800	1360
26	JUN	0	1357
26	JUN	600	1355
26	JUN	1200	1352
26	JUN	1800	1349
27	JUN	0	1347
27	JUN	600	1344
27	JUN	1200	1341
27	JUN	1800	1339
28	JUN	0	1336
28	JUN	600	1334
28	JUN	1200	1332
28	JUN	1800	1329
29	JUN	0	1327
29	JUN	600	1325
29	JUN	1200	1323
29	JUN	1800	1320
30	JUN	0	1318
30	JUN	600	1316
30	JUN	1200	1314
30	JUN	1800	1312
1	JUL	0	1310
1	JUL	600	1308
1	JUL	1200	1306
1	JUL	1800	1305
2	JUL	0	1303
2	JUL	600	1301
2	JUL	1200	1299
2	JUL	1800	1297
3	JUL	0	1296
3	JUL	600	1294
3	JUL	1200	1292
3	JUL	1800	1291
4	JUL	0	1289
4	JUL	600	1288
4	JUL	1200	1286
4	JUL	1800	1284
5	JUL	0	1283
5	JUL	600	1282
5	JUL	1200	1280
5	JUL	1800	1279
6	JUL	0	1277
6	JUL	600	1276

	DAL
6 JUL 1200 12	74
6 JUL 1800 12	73
7 JUL 0 12	72
7 JUL 600 12	71
7 JUL 1200 12	69
7 JUL 1800 12	68
8 JUL 0 12	67
8 JUL 600 12	66
8 JUL 1200 12	64
8 JUL 1800 12	63
9 JUL 0 12	62
9 JUL 600 12	61
9 JUL 1200 12	60
9 JUL 1800 12	59
10 JUL 0 12	58
10 JUL 600 12	56
10 JUL 1200 12	55
10 JUL 1800 12	54
11 JUL 0 12	53
11 JUL 600 12	52
11 JUL 1200 12	51
11 JUL 1800 12	50
12 JUL 0 12	49
12 JUL 600 12	48
12 JUL 1200 12	47
12 JUL 1800 12	46
13 JUL 0 12	46
13 JUL 600 12	45
13 JUL 1200 12	44
13 JUL 1800 12	43
14 JUL 0 12	42
14 JUL 600 12	41
14 JUL 1200 12	40
14 JUL 1800 12	39
15 JUL 0 12	39
15 JUL 600 12	38
15 JUL 1200 12	37
15 JUL 1800 12	36
16 JUL 0 12	35
16 JUL 600 12	35
16 JUL 1200 12	34
16 JUL 1800 12	33
17 JUL 0 12	32
17 JUL 600 12	32
17 JUL 1200 12	31
17 JUL 1800 12	30
18 JUL 0 12	29

DIA	MES	HORA	CAUDAL
18	JUL	600	1229
18	JUL	1200	1228
18	JUL	1800	1227
19	JUL	0	1227
19	JUL	600	1226
19	JUL	1200	1225
19	JUL	1800	1225
20	JUL	0	1224
20	JUL	600	1223
20	JUL	1200	1223
20	JUL	1800	1222
21	JUL	0	1221
21	JUL	600	1221
21	JUL	1200	1220
21	JUL	1800	1220

Figura 4.4.3 CMP de ingreso a Piedra

Hidrograma de la CMP de las cuencas intermedias entre Paso Limay y Piedra del Águila (punto 123 del diagrama de flujo)

No es posible representarlo ya que no se produce escurrimiento: esta situación se produce debido a que:

- las isohietas que atraviesan estas subcuencas (326, 327 y 328) son de escaso valor relativo con respecto al resto de las subcuencas
- estas subcuencas al estar aguas abajo de Paso Limay no han podido ser calibradas y por lo tanto se adoptaron para ellas los parámetros de pérdidas de precipitación (abstracción inicial de 40 mm y una pérdida constante de 2,5 mm/hr) correspondientes a la subcuenca 325 por su cercanía y similitud.

DIA	MES	HORA	CAUDAL
23	MAY	0	1199
23	MAY	600	1201
23	MAY	1200	1204
23	MAY	1800	1206
24	MAY	0	1208
24	MAY	600	1238
24	MAY	1200	1273
24	MAY	1800	1307
25	MAY	0	1352
25	MAY	600	1718
25	MAY	1200	2430
25	MAY	1800	3041
26	MAY	0	3417
26	MAY	600	4141
26	MAY	1200	5024
26	MAY	1800	5528
27	MAY	0	5778
27	MAY	600	5335
27	MAY	1200	4517
27	MAY	1800	4001
28	MAY	0	3783
28	MAY	600	3654
28	MAY	1200	3548
28	MAY	1800	3498
29	MAY	0	3512
29	MAY	600	6913
29	MAY	1200	12787
29	MAY	1800	16032
30	MAY	0	18140
30	MAY	600	17419
30	MAY	1200	15736
30	MAY	1800	15370
31	MAY	0	15144
31	MAY	600	13817
31	MAY	1200	12153
31	MAY	1800	11204
1	JUN	0	10695
1	JUN	600	10327
1	JUN	1200	10135
1	JUN	1800	10044
2	JUN	0	9937
2	JUN	600	9439
2	JUN	1200	8574
2	JUN	1800	7866
3	JUN	0	7437
3	JUN	600	6970

DIA	MES	HORA	CAUDAL
3	JUN	1200	6343
3	JUN	1800	5796
4	JUN	0	5442
4	JUN	600	5200
4	JUN	1200	5013
4	JUN	1800	4847
5	JUN	0	4693
5	JUN	600	4564
5	JUN	1200	4453
5	JUN	1800	4352
6	JUN	0	4250
6	JUN	600	4154
6	JUN	1200	4061
6	JUN	1800	3970
7	JUN	0	3882
7	JUN	600	3798
7	JUN	1200	3717
7	JUN	1800	3637
8	JUN	0	3559
8	JUN	600	3490
8	JUN	1200	3423
8	JUN	1800	3356
9	JUN	0	3289
9	JUN	600	3228
9	JUN	1200	3167
9	JUN	1800	3108
10	JUN	0	3051
10	JUN	600	2998
10	JUN	1200	2946
10	JUN	1800	2895
11	JUN	0	2843
11	JUN	600	2796
11	JUN	1200	2750
11	JUN	1800	2704
12	JUN	0	2658
12	JUN	600	2616
12	JUN	1200	2575
12	JUN	1800	2534
13	JUN	0	2493
13	JUN	600	2468
13	JUN	1200	2445
13	JUN	1800	2422
14	JUN	0	2400
14	JUN	600	2385
14	JUN	1200	2370
14	JUN	1800	2356

Tabla 4.4.5 Hidrograma de la CMP en el sitio de emplazamiento de Piedra del Águila(punto 124 del diagrama de flujo)

DIA	MES	HORA	CAUDAL
15	JUN	0	2341
15	JUN	600	2334
15	JUN	1200	2327
15	JUN	1800	2320
16	JUN	0	2313
16	JUN	600	2307
16	JUN	1200	2301
16	JUN	1800	2294
17	JUN	0	2288
17	JUN	600	2282
17	JUN	1200	2276
17	JUN	1800	2271
18	JUN	0	2265
18	JUN	600	2260

DIA	MES	HORA	CAUDAL
18	JUN	1200	2254
18	JUN	1800	2249
19	JUN	0	2244
19	JUN	600	2239
19	JUN	1200	2234
19	JUN	1800	2229
20	JUN	0	2224
20	JUN	600	2220
20	JUN	1200	2215
20	JUN	1800	2211
21	JUN	0	2206
21	JUN	600	2202
21	JUN	1200	2198
21	JUN	1800	2194

Figura 4.4.4 Hidrograma de la CMP en el emplazamiento de Piedra del Águila

4.5. Comparación con estudio de HIDRONOR

Dado que los valores obtenidos de caudal pico y volumen para la CMP de Piedra del Aguila son semejantes a los del estudio realizado por HIDRONOR S.A. en 1981, se realizó una comparación de las hipótesis consideradas en ambos estudios.

Comparación de la pretormenta:

CMP ₁₉₈₁: 1-30/5/45 CMP ₂₀₀₂: 26-30/5/45

Días de separación entre pretormenta y PMP

CMP ₁₉₈₁: 2 días CMP ₂₀₀₂: 1 día La duración de la pretormenta utilizada por HIDRONOR S.A. es mayor que la considerada en este estudio debido a las restricciones del modelo continuo empleado en 1981. Sin embargo, como se puede ver en la Figura 4.4.1.1, las simulaciones obtenidas para la pretormenta en ambos estudios son equivalentes y la diferencia en los períodos no lluviosos considerados solo origina un adelanto del caudal máximo.

Comparación de coeficientes de escurrimiento :

CMP 1981:

Sin nieve C = 0.471Con nieve (EAN de 90 mm) C = 0.381

CMP 2002 (en base a tormenta de mayo de 1985)

C = 0.433

Como se explica en 4.3 se evidenció en las pruebas de corridas de los modelos IHMS y HEC-1, que este último fue calibrado en condiciones de suelo saturado con el evento de 1993, en el cual las cuencas lacustres registraron valores importantes de EAN. Esto también queda corroborado con la comparación de los coeficientes de escurrimiento 0.381 y 0.433.

Figura 4.4.1.1 Comparación de CMP para Piedra del Aguila

En la Tabla 4.4.1.1 y Figura 4.4.1.2 se pueden apreciar los resultados de ambos estudios, pero referidos a la PMP de mayo de 1945. A los efectos comparativos se han agregado 90 mm de lluvia en forma equivalente al EAN = 90 mm que consideró HIDRONOR S.A.

La calibración del HEC-1 en las subcuencas bajas e intermedias con suelo desnudo para el evento de 1993 hace imposible contemplar la modelación de acumulación y fusión de un manto de nieve el día previo a la PMP (según estudio de HIDRONOR) ya que la incertidumbre sería invaluable.

Cabe aclarar que en el estudio de HIDRONOR S.A. se realizaron, con respecto al evento histórico de 1945, intercambios temporales de los pulsos del hietograma, lo cual no fue contemplado en este estudio

	PMP	CMP en Piedra del Aguila		
ESTUDIO	Fecha	Coef. máx.	Qp (m³/s)	Vol. (hm³)
Αστιλι	27-30/5/45	1.82	14097	14477
ACTUAL	27-30/5/45	1.82	16113	15430
	(con 90 mm de EAN)			
HIDRONOR	26-30/5/45	1.90	18900	8420

Tabla 4.4.1.1 Comparación de CMP con la PMP de mayo de 1945

Figura 4.4.1.2

5. TRANSITO DE LA CMP

Para la simulación del tránsito de la CMP por los embalses se utilizó el modelo HEC-1 en Alicurá con el método de "embalse a nivel" que asume que el nivel del embalse aguas arriba de la presa, es horizontal. Trabaja sólo con la ecuación de continuidad ya que en estas condiciones el cambio de almacenamiento en cada intervalo de tiempo es solamente función de la diferencia entre la entrada y la salida.

 $S_2 - S_1 = ((I_1 + I_2) / 2) t - ((O_1 + O_2) / 2) t$

o sea que para un determinado ingreso es función de las características de la descarga

S = K O (no hay almacenamiento en cuña)

Y en este caso el modelo utiliza un procedimiento iterativo para determinar S_2 y O_2 . Hace una primera estimación de la elevación de la superficie del agua, y con ese valor calcula S_2 y O_2 y se sustituye en la ecuación:

$$Y = (S_2 - S_1) / t - (I_2 + I_1) / 2 + (O_1 + O_2)/2$$
 donde

Y es el error de la estimación. Utiliza un procedimiento iterativo hasta que la elevación estimada ajuste con un error Y \pm 1 m³/seg

Los datos de entrada al modelo necesarios son:

Cota (SE)Vs Volumen del vaso (SV) Volumen (SV) Vs Descarga (SQ)

La secuencia de comandos es : SV, SE , SQ

Esos valores se colocan para todas las cotas del embalse y luego en el comando RS se indica a que cota del embalse se inicia la simulación. Esto permite mantener invariables SE y SV, que son las condiciones físicas del vaso y variar el valor de inicio de la simulación en RS y/o las descargas para diferentes cotas del embalse, de acuerdo a las normas de operación.

Para los embalses de Piedra del Aguila y El Chocón se usó un modelo ad-hoc "ORSEP" desarrollado para este proyecto. Este modelo simula dinámicamente, cada intervalo de tiempo, las descargas de Piedra del Aguila, en su ecuación o en descarga libre y El Chocón con el uso de la tabla 7 NMA (Normas de manejo de aguas) en su versión año húmedo o normal según sea el caudal promedio de los 10 días previos (Tabla 5.3.1)

La información básica ha sido suministrada por ORSEP así como los criterios sobre Franja de Atenuación de Crecidas y Franja de Emergencia, condiciones de descarga de Piedra del Aguila y de El Chocón.

5.1. Topología de la simulación

En la Figura 5.1.1 se representa el esquema de simulación implementado en HEC-1 para realizar el tránsito de la CMP

Figura 5.1.1

DE CAUDALES DEL MODELO IHMS

5.2. Características hidráulicas y normas de operación de los embalses

El ORSEP suministró la información correspondiente a las características hidráulicas y las normas de operación de los embalses los cuales son datos imprescindibles para realizar el tránsito de la CMP a través de los mismos.

5.2.1. Embalse Alicurá

Tabla 5.2.1.1 Características hidráulicas de la Presa de Alicurá

Cota Especificación		Volumen	Descarga m³/s (*)		
(msnm)	Especificación	(hm³)	1c	2c	3c
600.00	Lecho del río	0	0	0	0
692.00	Mínimo extraordinario	2350	0	0	0
692.20	Cresta vertedero	2360	0	0	0
705.00	Máximo	3215	892.1	1784.2	2676.3

(*) c = compuerta

- Definición de niveles (msnm)

Nivel máximo (705) Se debe tratar de no superar

Nivel mínimo extraordinario (692) Nivel debajo del cual las turbinas no pueden funcionar

Franja de operación normal: Nivel del embalse (msnm) por debajo del máximo (<705) y encima del mínimo extraordinario (>692) (en negrita en la Tabla 5.2.1.1)

Franja de emergencia: Es cuando el nivel del agua (msnm) es igual o mayor que el nivel máximo (\geq 705).

			Descarga	
Cota msnm	Volumen (hm³)	1 c (m³/s)	2 c (m³/s)	3 c (m³/s)
687.00	2169	0.0	0.0	0.0
692.00	2350	0.0	0.0	0.0
692.50	2375	7.7	15.4	23.1
693.00	2400	20.7	41.4	62.1
694.00	2500	57.7	115.4	173.1
695.00	2600	106.1	212.2	318.3
696.00	2700	164.4	328.8	493.2
697.00	2730	231.5	463.0	694.5
698.00	2750	306.8	613.6	920.4
699.00	2800	389.8	779.6	1169.4
700.00	2890	480.4	960.8	1441.2
701.00	2950	578.2	1156.4	1734.6
702.00	3000	683.1	1366.2	2049.3
703.00	3100	762.3	1524.6	2286.9
705.00	3215	892.1	1784.2	2676.3
706.00	3230	950.0	1900.0	2850.0
707.00	3250	1000.0	2000.0	3000.0
708.00	3300	1075.0	2150.0	3225.0
709.00	3350	1150.0	2300.0	3450.0
709.28	3493	1170.0	2340.0	3510.0

Tabla 5.2.1.2. Embalse de Alicurá (Cota – Volumen – Descarga)

Se asumen las compuertas con abertura de 10 metros.

5.2.2. Embalse Piedra del Aguila

Tabla 5.2.2.1- Características hidráulicas de la Presa Piedra del Aguila

Cota (msnm)	Especificación	Volumen (hm ³) (*)	Descarga (m³/s) Apertura total de compuertas
564	Mínimo extraordinario	5111	0
574	Cresta del vertedero	7053	0
576	Mínimo normal	7505	296
586	Nivel de Alerta en mayo- junio-julio-agosto	10137	5048
592	Nivel máximo	12047	9659

(*) Valores obtenidos con la ecuación del embalse

Vol (hm³) = 4.5873 (nivel Emb-400)^{5.4392}/10 ⁹

Máximo (592) Se debe tratar de no superar por razones de estabilidad de la presa.

Mínimo normal (576) Mínimo para un funcionamiento normal de las turbinas.

Mínimo extraordinario (564) no se debe bajar por restricciones físicas de diseño de la presa.

Niveles de Alerta: Son los niveles a partir de los cuales se tiene como prioridad el control de crecidas y la seguridad de la presa. Varía para cada mes del año.

Niveles de Alerta (msnm) corresponden al 1º de cada mes				
Mes	Nivel del lago (*)			
Enero	592.00			
Febrero	592.00			
Marzo	590.11			
Abril	588.02			
Mayo	586.00			
Junio	586.00			
Julio	586.00			
Agosto	586.00			
Setiembre	587.52			
Octubre	589.00			
Noviembre	590.52			
Diciembre	592.00			

Tabla 5.2.2.2. Embalse Piedra del Aguila

(*) Cuando el mes siguiente cambia de cota, la cota de cada día será obteniendo por interpolación lineal de los niveles de la Tabla.

Franjas de Operación

Son las franjas en que se divide teóricamente el embalse para determinar la norma de operación a aplicar:

- 1. Extraordinaria: corresponde a la operación cuando el nivel del embalse (msnm) es igual o menor del Mínimo normal (\leq 576)
- 2. Normal: corresponde a la operación cuando el nivel del embalse (msnm) está debajo del correspondiente nivel mensual de alerta y encima del mínimo normal.

Para: Mayo, Junio, Julio, Agosto 576 \leq Nivel del Embalse \leq 586

- Atenuación de Crecidas: corresponde a la operación cuando el nivel del embalse (msnm) se encuentra entre los niveles de Alerta y Nivel Máximo 586 < Nivel Embalse < 592
- 4. Emergencia: corresponde a la operación cuando el nivel del embalse (msnm) es igual o mayor al nivel máximo

Nivel Embalse \geq 592

Caudales para atenuación de crecidas

Es el caudal a erogar de la presa cuando el nivel del embalse (msnm) se encuentra en la franja de atenuación de crecidas

y de acuerdo al nivel que esté el embalse **Ezequiel Ramos Mexía** y a la descarga de El Chocón que se obtiene de la Tabla 5.2.2.3 (Tabla 7 NMA)

Cuando el nivel del embalse sobrepasa 592, la descarga es la máxima que permita el vertedero. En la franja de atenuación de crecida (FAC) el caudal a erogar por Piedra del Aguila se obtiene con la ecuación:

$$Q_{sal PdA} = 0,7 Q_{ent PdA} + 0,3 Q_{sal Ch}$$

Donde:

 $Q_{sal PdA}$ = erogación de Piedra del Aguila

Q_{ent PdA} = ingreso a Piedra del Aguila

Q_{sal Ch} = erogación de El Chocón (obtenida de la Tabla 5.2.2.3) o en la ecuación del vertedero, la que sea menor

Tabla 5.2.2.3 – Caudales a erogar por la presa Chocón en la franja de Atenuación de Crecidas

(Tabla 7 de Normas de Manejo de Aguas)

Niveles período invernal Mayo a Agosto

AÑO HÚMEDO

		Niv	el PIED	RA DEL	AGUIL	A (msn	m)
		Hasta	Desde	Desde	Desde	Desde	Desde
		586.0	586.0	587.5	589.0	590.0	591.0
	Hasta 378.00	1500	1600	1800	2100	2350	2350
	Desde 378.00	1600	1800	2100	2350	2350	2600
	Desde 378.25	1800	2100	2350	2600	2900	2900
Nivel en EL	Desde 378.75	2350	2350	2900	2900	3200	3500
CHOCÓN	Desde 379.50	2900	2900	3200	3500	3750	4000
	Desde 380.50	3200	3200	3500	3750	4000	4250
	Desde 381.00	3200	3500	3750	3750	4000	4250
	Desde 381.25	3500	3750	3750	4000	4250	4250

AÑO NORMAL

	ŕ						
		Niv	el PIED	RA DEI	AGUIL	A (msn	ım)
		Hasta 586.0	Desde 586.0	Desde 587.5	Desde 589.0	Desde 590.0	Desde 591.0
	Hasta 378.00	1050	1150	1400	1900	1900	1900
	Desde 378.00	1150	1400	1900	1900	1900	1900
	Desde 378.25	1400	1900	1900	1900	1900	1900
Nivel en EL	378.75	1900	1900	1900	1900	1900	1900
CHOCON	379.50	1900	1900	1900	1900	1900	3100
	280.50	1900	1900	1900	1900	3100	3100
	381.00	1900	1900	1900	3100	3100	4250
	381.25	1900	1900	3100	3100	4250	4250

Periodo Mayo-Agosto

Nivel Máximo Embalse Ezequiel Ramos Mexía : 381.5 (msnm)

Nivel Máximo Embalse Piedra del Águila: 592.0 (msnm)

Definición de año húmedo: Promedio de caudales medios diarios registrados en los 10 días anteriores: 3200 m³/seg

Caudal en franja de operación normal

En franja de operación normal:

576
$$\leq$$
 Nivel embalse PdA \leq 586

la descarga es la que corresponda en una interpolación lineal de volúmenes, entre un caudal mínimo de 322 m³/s y uno máximo de 1400 m³/s, para mayo y un mínimo de 298 m³/s y un máximo de 1400 m³/s, para junio.

Consideraciones sobre las Franjas de atenuación de crecidas y de emergencia en el Embalse Piedra del Aguila (ORSEP)

Franja de atenuación de crecidas

Para determinar el Caudal para Atenuación, se deberá interpolar el nivel del embalse de El Chocón y de Piedra del Águila dentro de los valores de la Tabla 7 NMA (Tabla 5.2.2.3) y aplicar la fórmula indicada.

Cuando el nivel del Embalse se encuentre en la Franja de Atenuación de Crecidas, el Caudal Mínimo de Operación será el Caudal para Atenuación, resultante de la aplicación de la correspondiente Norma de Operación para Atenuación de Crecidas, que dependerá del nivel en el Embalse de Piedra del Aguila y en el embalse de El Chocón (Tabla 5.2.2.3). Se entiende por caudal entrante a Piedra del Aguila el caudal del Limay antes de la hora 10 ó el último medido el día anterior.

El Caudal Máximo de Operación será el Caudal Máximo Normal salvo que resulte inferior al Caudal para Atenuación en cuyo caso será el Caudal para Atenuación.

A los efectos del uso de estas Normas de Operación, el concesionario deberá coordinar con la empresa titular de la Concesión de El Chocón un sistema que le permita estar informado sobre los niveles en dicho embalse.

Si por alguna causa durante una crecida se perdiera el conocimiento de los niveles en el embalse de El Chocón, transcurridas 36 horas y no haber obtenido dicha información, el concesionario deberá erogar el caudal correspondiente a la cota 381,50 msnm en el embalse de El Chocón, haciéndose cargo el concesionario de los perjuicios que dicho supuesto pudiera ocasionar aguas abajo.

Entre el 1 de mayo y el 31 de agosto, el concesionario deberá realizar diariamente el seguimiento del caudal medio del río Limay (entrante a Piedra del Águila) para determinar la norma de atenuación a utilizar. Si de acuerdo a dicho caudal se considera año húmedo o normal para el uso de las Tablas que correspondan.

Franja de emergencia

Si el embalse supera el Nivel Máximo (592 m snm), el concesionario deberá tratar de llevar nuevamente el embalse por debajo del Nivel Máximo. Para ello, el Caudal Mínimo de Operación será el caudal máximo previsto en la Tabla 5.2.2.3 Para la condición de Año Húmedo y máximo nivel en los embalses. El Caudal Máximo de Operación estará dado por la máxima capacidad de evacuación disponible en el Embalse de Piedra del Águila.

Estando el embalse en la Franja de emergencia, el concesionario deberá erogar el afluente siempre que éste se encuentre dentro de la banda definida entre el Caudal Mínimo de Operación y el Caudal Máximo de Operación. De resultar el afluente por debajo de esta banda, deberá erogar el Caudal Mínimo de Operación.

Cota (msnm)	Volumen (Hm ³)	Descarga (m³/s) (apertura total de compuertas)
572.0	6623	0.0
573.0	6835	0.0
574.0	7053	0.0
574.5	7163	31.0
575.5	7390	181.0
576.5	7622	410.0
577.5	7860	702.0
578.5	8103	1050.0
580.0	8481	1664.0
581.5	8872	2379.0
583.0	9278	3185.0
584.5	9700	4076.0
586.0	10137	5048.0
587.5	10589	6095.0
589.0	11058	7214.0
590.0	11380	8007.0
590.5	11544	8404.0
592.0	12047	9659.0
593.5	12568	10980.0

Tabla 5.2.2.4. Embalse de Piedra de	Águila (Cota – Volumen – Des	carga)
-------------------------------------	------------------------------	--------

Cota (m snm)	Especificación	Volumen (hm ³)	Descarga (m³/s)
366.5	Cresta Vertedero	10285	0
367	Mínimo extraordinario	10560	800
370	Mínimo Normal de mayo a agosto	12304	802
378	Nivel de Alerta (mayo a agosto)	17790	5102
381.5	Nivel máximo	20576	7720

Tabla 5.2.3.1. Característic	as hidráulicas
------------------------------	----------------

Vol (hm³) = 9.60637*(Niv.Emb)² – 6499.55 * Niv Emb + 1102021.21

Definición de niveles (msnm)

Nivel máximo (381.50): se debe tratar de no superar Mínimo normal: (370) Permite funcionamiento normal de las turbinas

Franjas de Operación

Extraordinaria: Cuando el nivel del embalse (msnm) es igual o menor que el mínimo normal

En mayo NE \leq 370

Normal: Nivel del embalse (msnm) debajo de los de alerta y encima del mínimo normal.

370 < NE < 378

de mayo a agosto

Atenuación de crecidas: Nivel del embalse (msnm) encima del de alerta y debajo del máximo normal

 $378 \le NE < 381.50$

Emergencia: Nivel del embalse (msnm) mayor que el Nivel Máximo Normal.

NE > 381.50

En la franja de operación normal:

el caudal se calcula con una interpolación lineal de los volúmenes entre un caudal mínimo de 322 m³/s y uno máximo de 1200 m³/s, para mayo y un mínimo de 298 m³/s y uno máximo de 1200 m³/s, para junio.

Franja de Atenuación de Crecidas (suministrado por ORSEP)

Para determinar el Caudal para Atenuación, se deberá interpolar el nivel de El Chocón y de Piedra del Águila inicialmente dentro de la Tabla 5.2.2.37 NMA (Tabla 7 NMA)

Cuando el nivel del Embalse se encuentre en la Franja de Atenuación de Crecidas, el Caudal Mínimo de Operación será el Caudal para Atenuación, resultante de la aplicación de la correspondiente Norma de Operación para Atenuación de Crecidas.

A los efectos del uso de estas Normas de Operación, el concesionario deberá coordinar con la empresa titular de la Concesión de Piedra del Águila un sistema que le permita estar informado sobre los niveles en dicho embalse.

Si por alguna causa durante una crecida se perdiera el conocimiento de los niveles en el embalse de Piedra del Águila, transcurridas 36 horas y no haber obtenido dicha información, el concesionario deberá erogar el caudal correspondiente a la cota 592,00 msnm en Piedra del Águila, haciéndose cargo el concesionario de los perjuicios que dicho supuesto pudiera ocasionar aguas abajo.

Entre el 1 de mayo y el 31 de agosto, el concesionario deberá realizar diariamente el seguimiento del caudal medio del río Limay (entrante a Piedra del Águila) para determinar la norma de atenuación a utilizar. Si de acuerdo a dicho caudal el río resulta calificado como Año Normal, el concesionario deberá considerar como Caudal Mínimo de Operación el correspondiente a la norma de operación para Año Normal (Tabla 7 NMA). Si, por el contrario, resulta calificado como Año Húmedo el concesionario deberá calcular el Caudal Mínimo de Operación con la norma de operación para Año Húmedo (Tabla 7 NMA). En este último caso, deberá informar a la Autoridad de Cuencas y al O.E.D. que el río se encuentra en esta condición.

Estando el embalse en esta franja, el concesionario podrá producir aguas abajo del dique compensador variaciones mayores que las máximas, definidas en esta concesión en el numeral 5.2, de ser necesario para cumplir con el caudal mínimo de operación que resulte de la norma de atenuación a utilizar.

Si en base a la información de la red de alerta de crecidas resulta que, dado los afluentes reales registrados y el correspondiente pronóstico de aportes, la Autoridad de Cuenca prevé que el río en un plazo no mayor de 5 días pasará a ser considerado como Año Húmedo, deberá notificar al concesionario y al O.E.D. En este caso, el concesionario deberá comenzar a aumentar gradualmente el caudal erogado para pasar en cuatro días del caudal resultante de la aplicación de la norma de atenuación para Año Normal al caudal correspondiente a la norma para Año Húmedo.

Fuera del período 1 de mayo a 31 de agosto, se define una única Norma de Operación en la Franja de Atenuación, la correspondiente a Año Normal (Tabla 5.2.2.3).

Franja de emergencia

Si el embalse supera el Nivel Máximo, el concesionario deberá tratar de llevar nuevamente el embalse por debajo del Nivel Máximo. Para ello, el Caudal Mínimo de Operación será el caudal máximo previsto en la Tabla 5.2.2.3 para la condición de Año Húmedo y máximo nivel en los embalses. El caudal máximo de operación estará dado por la máxima capacidad de evacuación disponible.

Estando el embalse en la Franja de Emergencia, el concesionario deberá erogar el afluente siempre que éste se encuentre dentro de la banda definida entre el Caudal Mínimo de Operación y el Caudal Máximo de Operación. De resultar el afluente por debajo de esta banda, deberá erogar el Caudal Mínimo de Operación.

Cota (m snm)	Volumen (hm ³)	Descarga (m³/s) (apertura total)
366.50	10285	0
367.00	10560	80
367.25	10697	120
368.00	11120	260
369.35	11908	600
370.00	12304	802
370.64	12693	1000
372.00	13556	1600
373.50	14549	2400
374.55	15270	3000
376.26	16489	4000
377.85	17674	5000
378.00	17790	5102
379.00	18565	5783
380.00	19354	6555
380.30	19593	6800
381.00	20167	7337
381.50	20576	7720
381.80	22775	8000

Tabla 5.2.3.2. Embalse Ezequiel Ramos Mexía (Cota – Volumen – Descarga)

Tabla 5.2.3.3. Niveles de Alerta (m s.n.m.) para diferentes meses

	PIEDRA DE	EL AGUILA	EL CH	OCON
	Nivel de Alerta (Máx.Nor.)	Nivel Mínimo Normal	Nivel de Alerta (Máx.Nor.)	Nivel Mín.Normal
Enero	592.00	576	381.00	372.0
Febrero	592.00	576	381.00	372.0
Marzo	590.11	576	380.06	371.2
Abril	588.02	576	379.01	370.5
Mayo	586.00	576	378.00	370.0
Junio	586.00	576	378.00	370.0
Julio	586.00	576	378.00	370.0
Agosto	586.00	576	378.00	370.0
Setiembre	587.52	576	378.70	370.5
Octubre	589.00	576	379.50	371.5
Noviembre	590.52	576	380.26	372.0
Diciembre	592.00	576	381.00	372.0
Niv. Máximo	592.0		38	1.5
Niv. Mín. Normal	576.0		370.0	(mayo)
Niv. Mín. Extraordinario	564	4.0	36	7.0

5.3 Determinación de año húmedo y año normal

Se considera año húmedo cuando el promedio de los caudales medios diarios que ingresan a Piedra del Aguila, antes de las 10 horas, en los 10 días anteriores supera los 3200 m^3 /s.

En igual forma, cuando el caudal es menor que 3200 m³/s, el año se considera normal.

Estas definiciones son las que se usan para seleccionar la Tabla 7 NMA (que corresponde a la Tabla 5.2.2.3 en este informe).

DIA	CAUDAL(*)	TIPO DE AÑO
0	1129.95	NORMAL
1	1108.50	NORMAL
2	1101.67	NORMAL
3	1188.96	NORMAL
4	1522.39	NORMAL
5	1900.18	NORMAL
6	2154.10	NORMAL
7	3030.15	NORMAL
8	4597.61	HUMEDO
9	5811.12	HUMEDO
10	6750.73	HUMEDO
11	7525.88	HUMEDO
12	8063.88	HUMEDO
13	8362.90	HUMEDO
14	8361.70	HUMEDO
15	8281.80	HUMEDO

Tabla 5.3.1	Determinación	de	Año	Húmedo	כ
-------------	---------------	----	-----	--------	---

DIA	CAUDAL(*)	TIPO DE AÑO
16	8295.58	HUMEDO
17	7660.17	HUMEDO
18	6313.35	HUMEDO
19	5302.65	HUMEDO
20	4549.95	HUMEDO
21	3914.13	HUMEDO
22	3496.18	HUMEDO
23	3221.40	HUMEDO
24	3002.90	NORMAL
25	2822.40	NORMAL
26	2674.48	NORMAL
27	2554.48	NORMAL
28	2458.32	NORMAL
29	2382.82	NORMAL

(*) promedios móviles de los caudales medios diarios registrados en los 10 dias anteriores en el Río Limay entrante a Piedra del Aguila

5.4 Simulación del tránsito de la CMP por el sistema de embalses: Alicurá, Piedra del Águila y El Chocón

5.4.1 Condiciones iniciales del tránsito de la CMP

ALICURÁ

Cota de inicio 705 Descarga : el caudal entrante (no regula)

PIEDRA DEL AGUILA Cota de inicio 586 Descarga: entre 586 y 592 Q_{sal PdA} = 0.7 . Q_{ent PdA} + 0.3 . Q_{sal CH} mayor que 592 vertedero libre (Tabla 5.2.2.4)

EL CHOCÓN

Cota de inicio: 378 (Operación en la franja de atenuación de crecidas) Las centrales no funcionan

5.4.2. Resultados del Tránsito de la CMP

En las tablas y figuras siguientes se incluyen los resultados del tránsito de la CMP por la aplicación del modelo HEC-1 en el caso de Alicurá y el elaborado en este estudio para los embalses de Piedra del Aguila y de El Chocón

Día	Mes	Hora	Q ingreso (m3/s)	Q egreso (m3/s)	Cota (msnm)
Max			2326	2324	705
23	MAY	0	430	430	705
23	MAY	600	429	430	705
23	MAY	1200	428	430	705
23	MAY	1800	427	430	705
24	MAY	0	425	429	705
24	MAY	600	429	429	705
24	MAY	1200	433	429	705
24	MAY	1800	436	430	705
25	MAY	0	440	438	705
25	MAY	600	451	450	705
25	MAY	1200	462	461	705
25	MAY	1800	473	472	705
26	MAY	0	484	483	705
26	MAY	600	497	496	705
26	MAY	1200	509	509	705
26	MAY	1800	521	521	705
27	MAY	0	534	534	705
27	MAY	600	534	534	705
27	MAY	1200	534	534	705
27	MAY	1800	534	534	705
28	MAY	0	534	534	705
28	MAY	600	561	561	705
28	MAY	1200	588	588	705
28	MAY	1800	615	615	705
29	MAY	0	642	642	705
29	MAY	600	1356	1337	705
29	MAY	1200	2091	2089	705
29	MAY	1800	2194	2193	705
30	MAY	0	2326	2324	705
30	MAY	600	1808	1824	705
30	MAY	1200	1291	1290	705
30	MAY	1800	1404	1402	705
31	MAY	0	1488	1488	705
31	MAY	600	1518	1518	705
31	MAY	1200	1532	1532	705
31	MAY	1800	1538	1538	705

Tabla 5.4.2.1	Hidrogramas	de ingreso	y egreso	para Al	icurá
---------------	-------------	------------	----------	---------	-------

Día	Moo	Horo	Q ingreso	Q egreso	Cota
Dia	ivies		(113/8)	(113/5)	
1	JUN	0	1540	1540	705
1	JUN	600	1526	1526	705
1	JUN	1200	1504	1504	705
1	JUN	1800	1475	1476	705
2	JUN	0	1440	1440	705
2	JUN	600	1399	1400	705
2	JUN	1200	1360	1361	705
2	JUN	1800	1329	1329	705
3	JUN	0	1306	1306	705
3	JUN	600	1288	1288	705
3	JUN	1200	1270	1270	705
3	JUN	1800	1249	1249	705
4	JUN	0	1223	1223	705
4	JUN	600	1196	1196	705
4	JUN	1200	1167	1168	705
4	JUN	1800	1141	1142	705
5	JUN	0	1118	1118	705
5	JUN	600	1094	1094	705
5	JUN	1200	1071	1072	705
5	JUN	1800	1051	1051	705
6	JUN	0	1032	1032	705
6	JUN	600	1016	1016	705
6	JUN	1200	1001	1001	705
6	JUN	1800	987	987	705
7	JUN	0	974	974	705
7	JUN	600	961	962	705
7	JUN	1200	950	950	705
7	JUN	1800	939	939	705
8	JUN	0	928	929	705
8	JUN	600	918	919	705
8	JUN	1200	909	909	705
8	JUN	1800	900	900	705
9	JUN	0	890	890	705
9	JUN	600	881	881	705
9	JUN	1200	872	872	705
9	JUN	1800	864	864	705
10	JUN		857	857	705

						_						
Día	Mes	Hora	Q ingreso (m3/s)	Q egreso (m3/s)	Cota (msnm)		Día	Mes	Hora	Q ingreso (m3/s)	Q egreso (m3/s)	Cota (msnm
10	JUN	600	851	851	705		15	JUN	1800	780	780	705
10	JUN	1200	845	845	705		16	JUN	0	780	780	705
10	JUN	1800	838	838	705		16	JUN	600	780	780	705
11	JUN	0	832	832	705		16	JUN	1200	780	780	705
11	JUN	600	825	825	705		16	JUN	1800	780	780	705
11	JUN	1200	819	819	705		17	JUN	0	780	780	705
11	JUN	1800	812	812	705		17	JUN	600	780	780	705
12	JUN	0	806	806	705		17	JUN	1200	780	780	705
12	JUN	600	799	800	705		17	JUN	1800	780	780	705
12	JUN	1200	793	793	705		18	JUN	0	780	780	705
12	JUN	1800	787	787	705		18	JUN	600	780	780	705
13	JUN	0	780	780	705		18	JUN	1200	780	780	705
13	JUN	600	780	780	705		18	JUN	1800	780	780	705
13	JUN	1200	780	780	705		19	JUN	0	779	779	705
13	JUN	1800	780	780	705		19	JUN	600	779	779	705
14	JUN	0	780	780	705		19	JUN	1200	779	779	705
14	JUN	600	780	780	705		19	JUN	1800	779	779	705
14	JUN	1200	780	780	705		20	JUN	0	779	779	705
14	JUN	1800	780	780	705		20	JUN	600	779	779	705
15	JUN	0	780	780	705		20	JUN	1200	779	779	705
15	JUN	600	780	780	705		20	JUN	1800	779	779	705
15	JUN	1200	780	780	705							

El hidrograma de la CMP entrante a Piedra del Aguila (QaPdA) es el resultado de la modelación (nodo 124 de la topología de la simulación).

Día	QaPdA	QePdA	QeChoc	VolPdA	NivPdA	VolChoc	NivCho
Max.	18,140.00	9773.25	4249.99	11950.11	591.71	20614.18	381.55
0.00	1199.00	1188.66	1164.54	10136.79	586.00	17788.12	378.00
0.25	1201.00	1269.63	1429.75	10135.30	586.00	17784.27	378.00
0.50	1204.00	1191.96	1163.88	10135.54	586.00	17784.49	378.00
0.75	1206.00	1193.41	1164.04	10135.80	586.00	17784.73	378.00
1.00	1208.00	1194.86	1164.21	10136.07	586.00	17785.00	378.00
1.25	1238.00	1216.02	1164.72	10136.53	586.00	17785.72	378.00
1.50	1273.00	1240.72	1165.40	10137.21	586.00	17786.96	378.00
1.75	1307.00	1264.76	1166.19	10138.11	586.01	17788.69	378.00
2.00	1352.00	1377.33	1436.42	10137.55	586.00	17787.03	378.00
2.25	1718.00	1554.01	1171.36	10141.07	586.02	17794.90	378.01
2.50	2430.00	2145.62	1482.06	10147.20	586.04	17808.84	378.03
2.75	3041.00	2590.77	1540.24	10156.91	586.07	17831.14	378.06
3.00	3417.00	2877.47	1618.57	10168.55	586.11	17857.94	378.09
3.25	4141.00	3414.43	1719.10	10184.23	586.16	17894.17	378.14
3.50	5024.00	4072.53	1852.42	10204.77	586.23	17941.73	378.20
3.75	5528.00	4439.60	1900.00	10228.26	586.31	17996.20	378.27
4.00	5778.00	4614.60	1900.00	10253.37	586.39	18054.44	378.35
4.25	5335.00	4304.50	1900.00	10275.62	586.47	18105.98	378.41
4.50	4517.00	3731.90	1900.00	10292.56	586.52	18145.15	378.47
4.75	4001.00	3370.70	1900.00	10306.16	586.57	18176.53	378.51
5.00	3783.00	3218.10	1900.00	10318.35	586.61	18204.60	378.54
5.25	3654.00	3127.80	1900.00	10329.70	586.65	18230.72	378.58
5.50	3548.00	3053.60	1900.00	10340.36	586.68	18255.25	378.61
5.75	3498.00	3018.60	1900.00	10350.70	586.72	18279.01	378.64
6.00	3512.00	3028.40	1900.00	10361.13	586.75	18302.99	378.67
6.25	6913.00	5409.10	1900.00	10393.60	586.86	18378.39	378.77
6.50	12787.00	6291.13	1900.00	10533.90	587.32	18472.84	378.89
6.75	16032.00	6795.95	1900.00	10733.38	587.97	18578.19	379.02
7.00	18140.00	7390.19	1900.00	10965.56	588.71	18696.38	379.17
7.25	17419.00	7919.99	1900.00	11170.72	589.35	18826.01	379.34
7.50	15736.00	8335.23	2118.77	11330.56	589.85	18959.88	379.51
7.75	15370.00	8710.31	2938.35	11474.40	590.29	19084.14	379.66
8.00	15144.00	9054.18	4040.83	11605.92	590.69	19192.03	379.80
8.25	13817.00	9309.17	4074.47	11703.27	590.98	19304.69	379.94
8.50	12153.00	9461.56	4109.58	11761.39	591.15	19419.88	380.08
8.75	11204.00	9086.43	4145.42	11807.11	591.29	19526.19	380.22
9.00	10695.00	8740.02	4178.39	11849.33	591.42	19624.43	380.34
9.25	10327.00	9726.27	4208.76	11862.29	591.45	19743.31	380.49
9.50	10135.00	9748.14	4245.47	11870.63	591.48	19861.87	380.63
9.75	10044.00	9764.02	4249.17	11876.67	591.50	19980.69	380.78
10.00	9937.00	9773.25	4249.16	11880.19	591.51	20099.71	380.92
10.25	9439.00	9439.00	4249.18	11880.17	591.51	20211.51	381.06
10.50	8574.00	8574.00	4249.48	11880.16	591.51	20304.62	381.17
10.75	7866.00	7866.00	4249.50	11880.14	591.51	20382.43	381.27
11.00	7437.00	6480.12	4247.40	11900.80	591.57	20430.36	381.32

Tabla 5.4.2.2	Tránsito de la CMP	por embalses Piedra	del Aquila y El Chocón

Día	QaPdA	QePdA	QeChoc	VolPdA	NivPdA	VolChoc	NivCho
11.25	6970.00	6970.00	4247.23	11900.78	591.57	20488.86	381.40
11.50	6343.00	5714.27	4247.22	11914.35	591.61	20520.25	381.43
11.75	5796.00	5331.34	4247.15	11924.37	591.64	20543.36	381.46
12.00	5442.00	5083.53	4247.09	11932.10	591.66	20561.12	381.48
12.25	5200.00	4914.11	4247.03	11938.26	591.68	20575.23	381.50
12.50	5013.00	4783.20	4246.99	11943.21	591.69	20586.50	381.51
12.75	4847.00	4847.00	4246.96	11943.20	591.69	20599.16	381.53
13.00	4693.00	4559.19	4246.96	11946.07	591.70	20605.60	381.54
13.25	4564.00	4468.88	4246.95	11948.11	591.71	20610.09	381.54
13.50	4453.00	4391.18	4246.94	11949.43	591.71	20612.90	381.54
13.75	4352.00	4320.48	4246.94	11950.10	591.71	20614.18	381.55
14.00	4250.00	4249.09	4246.95	11950.11	591.71	20613.92	381.55
14.25	4154.00	4181.89	4246.97	11949.49	591.71	20612.21	381.54
14.50	4061.00	4116.80	4246.99	11948.27	591.71	20609.09	381.54
14.75	3970.00	4053.11	4247.02	11946.46	591.70	20604.60	381.53
15.00	3882.00	3991.52	4247.06	11944.08	591.70	20598.78	381.53
15.25	3798.00	3932.73	4247.10	11941.15	591.69	20591.68	381.52
15.50	3717.00	3876.05	4247.15	11937.70	591.68	20583.36	381.51
15.75	3637.00	3820.06	4247.21	11933.74	591.67	20573.83	381.50
16.00	3559.00	3765.48	4247.27	11929.26	591.65	20563.12	381.48
16.25	3490.00	3717.20	4247.34	11924.34	591.64	20551.36	381.47
16.50	3423.00	3670.32	4247.41	11918.98	591.62	20538.59	381.46
16.75	3356.00	3623.45	4247.48	11913.19	591.61	20524.81	381.44
17.00	3289.00	3576.57	4247.57	11906.97	591.59	20510.01	381.42
17.25	3228.00	3533.90	4247.65	11900.34	591.57	20494.29	381.40
17.50	3167.00	3491.22	4247.74	11893.33	591.55	20477.64	381.38
17.75	3108.00	3449.95	4247.84	11885.93	591.52	20460.11	381.36
18.00	3051.00	3410.08	4247.94	11878.16	591.50	20441.70	381.34
18.25	2998.00	3373.01	4248.04	11870.04	591.48	20422.50	381.32
18.50	2946.00	3336.65	4248.15	11861.59	591.45	20402.51	381.29
18.75	2895.00	3300.98	4248.26	11852.81	591.43	20381.74	381.27
19.00	2843.00	3264.61	4248.38	11843.68	591.40	20360.19	381.24
19.25	2796.00	3232.11	4249.71	11834.25	591.37	20337.90	381.21
19.50	2750.00	3199.92	4249.73	11824.52	591.34	20314.93	381.18
19.75	2704.00	3167.72	4249.74	11814.49	591.31	20291.25	381.16
20.00	2658.00	3135.53	4249.76	11804.16	591.28	20266.88	381.13
20.25	2616.00	3106.13	4249.78	11793.56	591.25	20241.88	381.10
20.50	2575.00	3077.44	4249.79	11782.69	591.22	20216.25	381.06
20.75	2534.00	3048.74	4249.81	11771.56	591.18	20190.01	381.03
21.00	2493.00	3020.05	4249.83	11760.16	591.15	20163.14	381.00
21.25	2468.00	3002.55	4249.85	11/48.60	591.12	20135.90	380.97
21.50	2445.00	2986.44	4249.80	11736.89	591.08	20108.31	380.93
21.75	2422.00	2970.35	4249.82	11725.03	591.05	20080.37	380.90
22.00	2400.00	2954.96	4249.85	11/13.03	591.01	20052.10	380.86
22.25	2385.00	2944.46	4249.88	11/00.93	590.97	20023.60	380.83
22.50	2370.00	2933.97	4249.91	11088.74	590.94	19994.88	380.79
22.75	2356.00	2924.18	4249.93	11076.45	590.90	19905.94	380.76
23.00	2341.00	2913.69	4249.96	11004.00	590.86	19936.78	380.72
23.25	2334.00	2908.80	4249.99	11001.03	59U.8Z	19907.51	360.69
23.50	2321.00	2802.10	4243.99	11626.70	590.79	100/0.22	300.00
23.13	2320.00	2094.30	4204.04	11020.70	500.70	10040.90	200.02
∠4.00	2313.00	2094.44	JZD1.1Z	11020.09	090.13	19034.30	300.00

Día	QaPdA	QePdA	QeChoc	VolPdA	NivPdA	VolChoc	NivCho
24.25	2307.00	2571.47	3188.58	11614.96	590.71	19820.87	380.58
24.50	2301.00	2549.65	3129.83	11609.57	590.70	19808.04	380.57
24.75	2294.00	2535.80	3100.00	11604.34	590.68	19795.55	380.55
25.00	2288.00	2531.60	3100.00	11599.06	590.67	19782.98	380.53
25.25	2282.00	2527.40	3100.00	11593.75	590.65	19770.31	380.52
25.50	2276.00	2523.20	3100.00	11588.39	590.63	19757.55	380.50
25.75	2271.00	2519.70	3100.00	11583.01	590.62	19744.72	380.49
26.00	2265.00	2515.50	3100.00	11577.58	590.60	19731.80	380.47
26.25	2260.00	2512.00	3100.00	11572.13	590.58	19718.80	380.46
26.50	2254.00	2507.80	3100.00	11566.63	590.57	19705.71	380.44
26.75	2249.00	2504.30	3100.00	11561.10	590.55	19692.54	380.42
27.00	2244.00	2500.80	3100.00	11555.54	590.53	19679.30	380.41
27.25	2239.00	2497.30	3100.00	11549.95	590.52	19665.99	380.39
27.50	2234.00	2493.80	3100.00	11544.32	590.50	19652.60	380.37
27.75	2229.00	2490.30	3100.00	11538.66	590.48	19639.13	380.36
28.00	2224.00	2486.80	3100.00	11532.97	590.47	19625.59	380.34
28.25	2220.00	2484.00	3100.00	11527.26	590.45	19611.99	380.32
28.50	2215.00	2480.50	3100.00	11521.51	590.43	19598.31	380.31
28.75	2211.00	2477.70	3100.00	11515.73	590.41	19584.57	380.29
29.00	2206.00	2474.20	3100.00	11509.93	590.40	19570.76	380.27
29.25	2202.00	2471.40	3100.00	11504.09	590.38	19556.88	380.25
29.50	2198.00	2468.60	3100.00	11498.24	590.36	19542.95	380.24
29.75	2194.00	2465.80	3100.00	11492.35	590.34	19528.95	380.22

Figura 5.4.2.2

Figura 5.4.2.3

Figura 5.4.2.4

Tabla 5.4.2.3 Resumen de	I comportamiento de las	presas
--------------------------	-------------------------	--------

	Caudal máximo entrante	Descarga máxima	Cota máxima
Alicurá	2326	2324	705.04
Piedra del Aguila	18140	9773	591.71
El Chocón	9773	4250	381.55

6. REFERENCIAS BIBLIOGRAFICAS

- * AIC (1994). Informe Nivológico 1982-1993. Análisis evaluación resumen Estadístico.
- * AIC (1997). Informe Nivológico 1994-1996. Análisis evaluación resumen Estadístico.
- * Anderson, E.A. (1978a). Snow Accumulation and Ablation Model. Operational Forecast and Data Components for the National Weather Service River Forecast System Data Management Program, System Documentation. Silver Spring, Md.: National Weather Service.
- * Anderson, E.A. (1978b). Initial Parameter Values for the Snow Accumulation and Ablation Model. Operational Forecast and Data Components for the National Weather Service River Forecast System Data Manegement Program, System Documentation. Silver Spring, Md.: National Weather Service.
- * B.C. Hydro International Ltd. (1996). Review of PMP/PMF Studies for the Limay and Neuquén River Basins, Argentina. Update of the Hydrological Studies Pertaining to the Safety of the Diversion and Relief Structures in the Neuquén River Basin.
- * B.C. Hydro International Ltd. (1999). Determination of the Probable Maximum Precipitation for the Neuquén River Basin. Update of the Hydrological Studies Pertaining to the Safety of the Diversion and Relief Structures in the Neuquén River Basin.
- Beard, L. R. (1966). Optimization Techniques for Hydrologic Engineering. The HEC Technical. Paper nº 2
- * Benjamin, J.R. y C. Cornell (1970). Probability, Statistics, and Decision for Civil Engineers. McGraw Hill.
- * Beta Studio S.R.L. ISMES spa (1998). Aplicación del modelo hidrológico IHMS a las cuencas de los Rios Neuquen, Limay y Collón Curá AIC.
- * Bras, R.L. (1990). Hydrology: An Introduction to Hydrologic Science. Addison-Wesley Publishing Company.
- * Chow, V.T., D.R. Maidment y L.W. Mays (1994). Hidrología Aplicada. McGraw-Hill.
- * Chuvieco, E. (1996). Fundamentos de Teledetección Espacial. Edt. Rialp S.A. Madrid, España.
- * Clarke, R.T. (1994). Statistical Modelling in Hydrology. Wiley.
- * Devoto, Manzano, Obertello, Seoane. (1981). "Crecida de proyecto para el aprovechamiento Piedra del Águila". Hidronor S.A. Gerencia de Planeamiento
- * Eagleson, P.S. (1970). Dynamic Hydrology. McGraw-Hill.
- * Eastman, J. (1995). User Guide of IDRISI for Windows. Clark University. Wonchester, MA, USA.
- Fernández, P.C. y L.A. Fornero (1997). Un procedimiento para el relleno y generación de series de tiempo de temperatura en las cuencas de los ríos Neuquén y Limay (Argentina). 7º Conferencia Internacional sobre Conservación y Gestión de Lagos. San Martín de los Andes.
- * Ford, D., E.C. Morris and A. D. Feldman (1980). Corps of Engineers Experience with Automatic calibration of a Precipitation- Runoff Model HEC. Technical Paper nº 70.
- * Linsley R. K. Jr, M. A. Kohler, J.L. H. Paulhus (1988). Hidrología para Ingenieros. Edit. Mac Graw Hill, México.

- * Nash, J.E. (1957). "The Form of the Instantaneous Unit Hydrograph." International Association for Scientific Hydrology, Assemblée Générale de Toronto Tome III, 114-121.
- * NOAA INFOCARTO. Página Web.
- * Petterssen, S. (1976). Introducción a la Meteorología. Espasa-Calpe, S.A.
- * Quick,M.C. and P. Kroeber. (1996). Review of PMP/PMF Studies for the Limay and Neuquen Rivers Basins Argentina.
- * SMI (1994). IHMS Integrated Hydrological Model Systems. Swedish Meteorological ans Hydrological Institute.
- * Trípodi D. A. (1999). Pronóstico de caudales en cuencas de montaña. Tesis para optar al Grado de Magister en Ciencias de la Ingeniería. Pontificia Universidad Católica de Chile.
- * U.S. Army Corps of Engineers (1998). HEC-1 Flood Hydrograph Package CPD-1 A Versión 4.1.
- * U.S. Federal Energy Regulatory Commission (2001). Engineering Guidelines for the evaluation of Hydropower Projects.
- * WMO (1986). Manual for the Estimation of Probable Maximum Precipitation. World Meteorological Organization N°332. Operational Hydrology Report 1.
- * WMO (1989). Statistical Distributions for Flood Frequency Analysis. C. Cunnane. WMO N° 718, Operational Hydrology Report 33.

ANEXO I

ANÁLISIS ESTADÍSTICO DE CAUDALES

ANÁLISIS DE LAS SERIES DE CAUDALES MÁXIMOS EN LAS ESTACIONES PASO FLORES Y PASO LIMAY

Introducción

El objetivo de este trabajo es estimar la relación entre caudales máximos y períodos de retorno para las series de Paso Flores y Paso Limay aplicando la teoría de valores extremos.

La tarea de la selección de funciones de densidad de probabilidades y estimación de sus parámetros implica la realización de distintas etapas. En forma general, las etapas consisten en la selección de una función de densidad de probabilidades, la aplicación de un método de estimación de sus parámetros y la estimación de los caudales para distintos periodos de retorno.

La teoría de valores extremos clásica considera, como una de sus hipótesis, que los datos de la muestra pertenecen a una única población. En consecuencia, se debe analizar si los procesos hidrometeorológicos que generan las crecidas máximas que ocurren en la cuenca definen la existencia de una o más poblaciones.

A partir de los conceptos anteriores, las tareas realizadas incluyeron: el análisis de la existencia de crecidas asociadas con distintos procesos de generación de los caudales, la estimación de una relación caudal-período de retorno para procesos mixtos y la comparación de los resultados con las estimaciones que consideren una única serie de máximos anuales para las series de caudales.

En la etapa del análisis de la existencia de dos procesos de generación de crecidas se aplicaron las pruebas de Mann-Whitney y de la relación de verosimilitud.

El análisis se realizó identificando dos muestras, las crecidas asociadas a procesos de precipitación (otoño e invierno) y las asociadas a procesos de fusión (primavera). La aplicación de las pruebas seleccionadas permitió estudiar estadísticamente la existencia de dos poblaciones diferentes.

En la segunda parte se realizó la estimación de los parámetros de la función de densidad de probabilidades mixta que incluye los dos procesos considerados. Los caudales estimados son consistentes con los valores definidos con una única muestra de caudales máximos anuales.

Las pruebas mencionadas anteriormente fueron aplicadas para analizar la posibilidad de la existencia de dos poblaciones diferentes respecto al tiempo en la estación Paso Limay.

Finalmente, se presentan los resultados de la estimación de las relaciones caudales extremos-períodos de retorno utilizando distintas hipótesis básicas que han sido analizadas durante el estudio.

Desarrollo del trabajo

A partir de las series de caudales medios diarios, proporcionadas por la Autoridad Interjurisdiccional de las Cuencas de los Ríos Limay, Neuquen y Negro (AIC), se identificaron los máximos anuales y su fecha de ocurrencia en el período correspondiente a los años hidrológicos 1903/04 - 1982/83 para la estación Paso Limay y 1941/42 – 1998/99 para la estación Paso Flores. En esta última los datos del período 1983/84 – 1998/99 son obtenidos mediante la suma de caudales de estaciones aguas arriba.

Ambas series exhiben la característica del régimen fluvial mixto de los ríos de la región, máximos en el período mayo-agosto producidos por precipitaciones y en el período septiembre-diciembre producidos principalmente por fusión.

Esta situación planteó la necesidad de investigar si los datos de las series provenían de la misma población o de subpoblaciones con características estadísticas diferentes.

La información diaria disponible de precipitación y temperatura comienza a partir del año 1980, por lo que no fue posible utilizar un criterio de identificación del origen de los máximos anuales basado en la física de los procesos generadores del escurrimiento. Por este motivo, el análisis se realizó en forma gráfica, teniendo en cuenta la información disponible en otras estaciones de aforo de la cuenca y las características de la curva de ascenso y de recesión de los hidrogramas originados por cada proceso.

Con el propósito de demostrar si los máximos de estas muestras pertenecían a la misma población, se aplicaron dos pruebas estadísticas, la no paramétrica de Mann-Whitney (McCuen, 1993; Kite, 1988) y la paramétrica denominada relación de verosimilitud (Wilks, 1995).

La prueba de Mann-Whitney es potente en particular para muestras de corta longitud. La hipótesis nula utilizada fue, H_o : las dos muestras independientes provienen de la misma población, con hipótesis alternativa bidireccional, H_1 : las dos muestras independientes no provienen de la misma población.

El valor calculado del estadístico *U* de la prueba es igual al mínimo entre Ua y Ub donde:

Ua = Na Nb + 0.5 Nb (Nb+1) - SbUb = Na Nb + 0.5 Na (Na+1) - Sa

siendo: Na y Nb la longitud de las muestras A y B, Sa y Sb la suma de las posiciones en la muestra ordenada de menor a mayor de longitud Na + Nb.

El estadístico *U* tiene distribución Normal con media igual a 0.5(NaNb) y varianza [NaNb(Na+Nb+1)]/12.

La otra prueba aplicada fue la denominada relación de verosimilitud. Ésta puede ser usada si se cumplen las siguientes condiciones: i) la hipótesis nula posee un número k_0 de parámetros y la hipótesis alternativa posee un número mayor k_A y ii) se debe poder considerar que el número de parámetros k_0 es un caso particular del conjunto total de parámetros k_A .

Esta relación compara la verosimilitud asociada con la hipótesis nula H_0 versus la hipótesis alternativa H_A , habiendo estimado los k_0 y k_A parámetros por el método de máxima verosimilitud. Si la hipótesis nula es verdadera, la verosimilitud asociada con H_A será siempre, al menos, igual a la asociada a H_0 , en consecuencia la hipótesis nula es rechazada

sólo si la verosimilitud de la hipótesis alternativa es suficientemente grande como para no poder ser atribuida a variaciones muestrales.

El estadístico para esta prueba, expresado en función de los logaritmos de las funciones de verosimilitud de la hipótesis nula y de la alternativa es:

$$\mathbf{A} = 2 \left[L(H_A) - L(H_0) \right]$$

Bajo la H_0 , para un tamaño de muestra grande, la distribución muestral de A es χ^2 con $\nu = k_A - k_0$ grados de libertad. En esta aplicación la hipótesis nula fue H_0 : la muestra de máximos anuales proviene de una distribución Gumbel con $k_0 = 2$ parámetros (α_0 , β_0) y la hipótesis alternativa es H_A : los máximos anuales provienen de dos distribuciones Gumbel con $k_A = 4$ parámetros (α_1 , β_1 , α_2 , β_2).

Dado que existían dudas con respecto a los cuarenta primeros años de registro de Paso Limay, las mismas pruebas fueron utilizadas para analizar la existencia de dos poblaciones diferentes respecto al tiempo, es decir probar si los valores correspondientes al período 1903/04-1942/43, muestra *A*, pertenecían a la misma población que los correspondientes al período 1943/44-1982/83, muestra *B*, sin tener en cuenta el proceso de producción de los valores extremos. El mismo análisis fue realizado para la estación Paso Flores considerando los períodos 1941/42-1982/83 y 1983/84-1998/99.

La decisión de aceptar o rechazar la hipótesis nula fue tomada en función del valor de probabilidad asociado a los estadísticos de las pruebas (valor-*p*.). La hipótesis de homogeneidad en los procesos de producción del escurrimiento es rechazada para las dos estaciones, mientras que la de homogeneidad con respecto a los períodos de registro es aceptada para Paso Limay y rechazada para Paso Flores. Estos resultados se presentan en las Tablas 1 y 2.

	PROCESOS						
		1903/04-1982/83		1943/44-1982/83		PERÍODO	
		Precipitación	Fusión	Precipitación	Fusión	1903/04 – 1942/43	1943/44 – 1982/83
	Ν	66	14	36	4	40	40
Mann -	Z	-3.647		-2.029		-0.635	
Whitney	Valor-p	< 0.001		0.042		0.525	
Relación de	А	No converge método de estimación			1.186		
Verosimilitud	Valor-p	de parámetros serie fusión			0.553		

Tabla 1. Pruebas de homogeneidad estación Paso Limay

		PROC	PERÍODO		
		Precipitación	Fusión	1941/42- 1982/83	1983/84- 1998/99
	Ν	36	6	42	16
Mann-	Z	-2.516		-2.888	
Whitney	Valor-p	0.012		0.004	
Relación de	A	9.785		10.966	
Verosimilitud	Valor-p	0.008		0.004	

Tabla 2 Pruebas de homogeneidad estación Paso Flores

Análisis de frecuencia de crecientes

Los resultados de las pruebas anteriores muestran la posible importancia de incorporar en el análisis de frecuencia de crecientes la representación matemática de los dos procesos generadores de caudales máximos.

En este trabajo se decidió aplicar la metodología presentada por Waylen y Woo (1982) para el tratamiento de poblaciones mixtas, la cual no reduce el tamaño de las muestras sobre las que se realiza la estimación de parámetros ni estima un factor de peso, requerido por la mayoría de los métodos de tratamiento de distribuciones mixtas.

Esta metodología considera que las crecientes son producidas por dos procesos independientes caracterizados por las funciones de distribución acumuladas F_1 y F_2 , y que la distribución de crecientes anual global F puede ser representada como :

$$F(X \le x) = F_1(X \le x) F_2(X \le x) = 1 - \frac{1}{T}$$

donde: T es el período de retorno, F1 y F2 son distribuciones Gumbel o General de Valor Extremo Tipo I. Reemplazando en la expresión anterior, la función de distribución que considera los dos procesos es:

$$F(X \le x) = exp\left\{-exp\left[-\left(\frac{x-\beta_{1}}{\alpha_{1}}\right)\right]\right\} * exp\left\{-exp\left[-\left(\frac{x-\beta_{2}}{\alpha_{2}}\right)\right]\right\}$$

El procedimiento a seguir para obtener la relación entre caudales máximos y períodos de retorno es el siguiente,

- 1) identificación de las dos subpoblaciones independientes,
- 2) estimación de los parámetros para cada submuestra,
- aplicación de la expresión anterior para obtener probabilidades de ocurrencia de crecidas de diferentes magnitudes.

Identificación de las muestras de las subpoblaciones

Para seleccionar los caudales extremos producidos por los procesos de precipitación y de fusión en cada uno de los años hidrológicos, se tomó como base la identificación realizada en la serie de máximos anuales (SMA) y se revisaron los valores medios diarios a fin de encontrar el máximo correspondiente al otro proceso para el año hidrológico considerado.

Las pruebas de Mann-Whitney y de la relación de verosimilitud, fueron aplicadas a las series obtenidas con el propósito de demostrar su pertenencia a distintas poblaciones. Estos resultados se presentan en la Tabla 3 y muestran el rechazo de la hipótesis nula que considera que las muestras provienen de la misma población.

El coeficiente de correlación fue estimado con el propósito de estudiar la independencia de las muestras (Tabla 3). Bajo la hipótesis nula, H_0 : $\rho = 0$, estos valores fueron comparados con los críticos absolutos para niveles de significación de 0.05 y 0.01 (Crow et al., 1960), resultando significativamente distintos de cero (α =0.05) para las muestras de Paso Limay (1903/04-1982/83) y para las de la estación Paso Flores (1941/42-1982/83).

			PASO	PASO FLORES	
			N=80	N=40	N=42
	Mann -	Z	-6.092	-4.917	-4.706
Prueba	Whitney	Valor-p	< 0.001	< 0.001	< 0.001
Homogeneidad	Relación de	А	95.409	48.887	35.766
	Verosimilitud	Valor-p	< 0.001	< 0.001	< 0.001
Prueba	Coeficiente correlación		0.252	0.295	0.325
Independencia	Valor Crítico 5%		0.220	0.312	0.304
	Valor Crític	co 1%	0.287	0.403	0.393

Tabla 3. Resultados de la aplicación de las pruebas estadísticas

Estimación de parámetros

Los parámetros para las funciones de distribución de probabilidades Gumbel fueron estimados por el método de los momentos de probabilidad ponderada.

Este método es usado en aquellas distribuciones cuyas expresiones inversas pueden ser definidas analíticamente, como es el caso de la función de densidad de Gumbel. Los momentos de probabilidad ponderada son definidos por Greenwood et al. (1979) como:

$$M_{i, j, k} = E[X^{i} F^{j} (1-F)^{k}] = \int_{0}^{1} x(F)^{i} F^{j} (1-F)^{k} dF$$

donde la variable aleatoria X se distribuye como F = F(x) = P(X < x) y los subíndices *i*, *j* y *k* son números reales. Si *j*=*k*=0 y además *i* es entero no negativo, el momento de probabilidad ponderada $M_{i, 0, 0}$ representa el momento convencional de orden *i* con respecto al origen.
En el caso especial en que i = 1 y j ó k son iguales a cero, los momentos M _{1, j, 0} y M _{1, 0, k} son lineales en X y proveen relaciones analíticas simples para la estimación de parámetros de la distribución. Para la distribución Gumbel estas relaciones son:

$$\beta = M_{1,0,0} - \varepsilon \alpha$$

$$\alpha = \frac{\left(2 M_{1,10} - M_{1,0,0}\right)}{\ln(2)}$$

donde ϵ es el número de Euler.

Resultados

En función de los resultados de la prueba de independencia se decidió realizar la estimación de los parámetros para la estación Paso Limay en el período 1943/44 - 1982/83. En el caso de la estación Paso Flores se utilizó la serie 1941/42-1982/83 y se aceptó la hipótesis de independencia al nivel de significación 0.01.

Como se dijo anteriormente, debido a la falta de información hidrometeorológica, las series de máximos de cada proceso generador no fueron obtenidas mediante un criterio físico como el análisis de la precipitación y temperatura antecedentes a la fecha de producción de los máximos. Por esta razón, se compararon los resultados de la metodología propuesta en este trabajo con los obtenidos del ajuste de una distribución Gumbel a la serie de máximos anuales. En la Tabla 4 se presentan los valores estimados de los parámetros de las funciones de distribución.

	PASO LIMAY			PASO FLORES		
	MIXTA		SMA	MIXTA		SMA
PARÁMETRO	Precipitaciór	n Fusión		Precipitación	Fusión	
β	1898.37	1147.04	1930.63	553.54	391.54	561.88
α	895.42	279.72	877.34	196.14	82.27	191.68

La ecuación que expresa la función de distribución de los dos procesos combinados generadores de crecientes relacionada con el período de retorno fue resuelta para distintos valores de T. Estos resultados se presentan en la Tabla 5 y se incluyen los caudales estimados para la serie de valores extremos en cada estación.

Т	Ут	PASO LIMAY		PASO FLORES	
(años)	Var. Gumbel	MIXTA	SMA	MIXTA	SMA
2	0.37	2251.8	2252.2	655.4	632.1
10	2.25	3913.8	3905.0	1047.7	993.2
50	3.90	5392.3	5354.0	1401.7	1309.8
100	4.60	6017.4	5966.5	1551.6	1443.6
500	6.21	7462.1	7382.1	1898.0	1752.9
1000	6.91	8083.2	7990.6	2047.0	1885.8
10000	9.21	10145.4	10011.2	2541.5	2327.3

Tabla 5. Caudales estimados (m³/seg) para distintos períodos de retorno

Los resultados anteriores muestran que no existen diferencias significativas entre los valores estimados con la distribución mixta y con la Gumbel ajustada a la serie de máximos anuales para las estaciones analizadas.

Esta condición puede ser explicada analizando las funciones de densidad teóricas ajustadas a las series de precipitación y de fusión (Figuras 1 y 2).

En ambas estaciones, la función de densidad correspondiente al proceso de precipitación rige la función de densidad de los dos procesos combinados y es prácticamente idéntica a la de la serie de máximos anuales (Figuras 3 y 4), por lo tanto las estimaciones obtenidas de los dos ajustes son muy similares.

En las Figuras 5 y 6 se presentan las funciones de densidad correspondiente a la serie de máximos anuales y la correspondiente a la distribución mixta de procesos para la estación Paso Limay y Paso Flores, respectivamente.

El ajuste de las distribuciones Gumbel a las series de máximos anuales y los intervalos de confianza, para un nivel de significación de 0.05, se presentan en las Figuras 7 y 8 para las dos estaciones analizadas.

En las Figuras anteriores se usó la variable estandarizada Gumbel $y_T = -\ln \left[-\ln F(x_T) \right]$ a fin de mostrar el ajuste de los datos a la distribución.

Conclusiones

El análisis de las series de máximos anuales de las dos estaciones permitió identificar la presencia de dos procesos generadores de valores extremos que originan la falta de homogeneidad en las series.

En base a los resultados de las pruebas utilizadas para determinar la existencia de dos poblaciones diferentes respecto al tiempo, se acepta la hipótesis de homogeneidad en la estación Paso Limay y se rechaza en Paso Flores.

Se empleó una metodología de estimación de la relación caudal - período de retorno que contempla los procesos mixtos de generación.

Estos resultados fueron comparados con los obtenidos del ajuste de una distribución Gumbel a la serie de máximos anuales y no se observaron diferencias significativas en las estimaciones. Esta coincidencia es justificada por la forma de las funciones de densidad de las series de precipitación y de fusión seleccionadas a partir de los datos de caudales medios diarios.

Debido a que la selección de estas series, en particular la correspondiente al proceso de fusión, no fue realizada mediante la aplicación de un criterio físico y dada la escasa diferencia en las estimaciones de los dos métodos, parecería apropiada la utilización de la serie de máximos anuales en la determinación de la relación caudal - período de retorno para las estaciones analizadas.

Bibliografía

Crow, E. L., F. A. Davis, M. W. Maxfield. Statistics Manual. Dover Publications, Inc., 1960.

Kite, G. W. Frequency and Risk Analysis in Hydrology. Water Resources Publications, 1988.

Greenwood, J.A., J.M. Landwehr, N.C. Matalas y J.R. Wallis. Probability Weighted Moments: Definition and Relation to Parameters of Distributions Expressible in Inverse Form. *Water Resour. Res.*, 15 (5), 1049-1054, 1979.

McCuen, R. H. Microcomputer Applications in Statistical Hydrology. Prentice Hall, 1993.

Waylen, P. y M. Woo. Prediction of Annual Floods Generated by Mixed Processes. *Water Resour. Res.*, 18 (4), 1283-1286, 1982.

Wilks, D.S. Statistical Methods in the Atmospheric Sciences. Academic Press, 1995.

Figura 1. Funciones de densidad de caudales máximos producidos por procesos de precipitación y fusión. Estación Paso Limay

Figura 2. Funciones de densidad de caudales máximos producidos por procesos de precipitación y fusión. Estación Paso Flores

Figura 3. Funciones de densidad de caudales máximos de precipitación y máximos anuales. Estación Paso Limay

Figura 4. Funciones de densidad de caudales máximos de precipitación y máximos anuales. Estación Paso Flores

Figura 5. Funciones de densidad de caudales mixtos y máximos anuales. Estación Paso Limay

Figura 6. Funciones de densidad de caudales mixtos y máximos anuales. Estación Paso Flores

Figura 7. Distribución ajustada e intervalos de confianza. Estación Paso Limay

Figura 8. Distribución ajustada e intervalos de confianza. Estación Paso Flores

ANEXO II

ESQUEMA METODOLÓGICO DEL U.S. F.E.R.C.

FEDERAL ENERGY REGULATORY COMMISSION

Engineering Guidelines for the Evaluation of Hydropower Projects

> CHAPTER VIII DETERMINATION OF THE PROBABLE MAXIMUM FLOOD

> > September 2001

DETERMINING THE PROBABLE MAXIMUM FLOOD FOR CIVIL WORKS FLOW CHART

